首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The further evolution of a massive X-ray binary consisting of a compact object and an OB supergiant is outlined. The supergiant exceeds its critical Roche lobe and a second stage of mass transfer starts. The remnant of the mass losing star — a pure helium star — develops a collapsing iron core and finally undergoes a supernova explosion. If the compact companion is a black hole the system remains bound; if the compact companion is a neutron star the system is disrupted unless an extra kick allowing an asymmetric explosion is given. Computations were performed for the massive binary 22.5M +2M . The possible final evolutionary products are: (1) a black hole and a compact object, in a binary system, (2) two run-away pulsars, (3) a binary pulsar. As final parameters for the described system the eccentricity and period for the recently discovered binary pulsar 1913+16 may be found. An orbital inclination ofi=40° may be derived. The probability for the generation of binary pulsars is very low; in most cases the system is disrupted during the supernova explosion.  相似文献   

2.
The neutral hydrogen emission at 21 cm has been investigated with the RATAN-600 radio telescope in the vicinity of the supernova remnant HB9. A clumpyHI shell with radial motions surrounding the remnant has been detected. Its measured parameters contradict the connection with a shock wave from a supernova explosion. The shell formation under the action of a wind from a star that exploded as a supernova at the end of its evolution seems more realistic. The characteristics of the star obtained from the observed shell parameters are the following: a wind power of 0.5 × 1038 erg s?1, a mass-loss rate of 3.7 × 10?5 M yr?1, and an age of 3 × 106 yr. Given the measurement errors, the mass of the star is estimated to be >8M .  相似文献   

3.
CEMP-r/s stars at low metallicity are known as double-enhanced stars that show enhancements of both r-process and s-process elements. The chemical abundances of these very metal-poor stars provide us a lot of information for putting new restraints on models of neutron-capture processes. In this article, we put forward an accreted scenario in which the double enrichment of r-process and s-process elements is caused by a former intermediate-mass Asymptotic Giant Branch (AGB) companion in a detached binary system. As the AGB superwind is only present at the ultimate phase of AGB stars, there is thus a lot of potential that the degenerate-core mass of an intermediate-mass AGB star reaches the Chandrasekhar limit before the AGB superwind. In these circumstances, both s-process elements produced in the AGB shell and r-process elements synthesized in the subsequent explosion would be sprayed contemporaneously and accreted by its companion. Despite similarity to physical conditions of a core-collapse supernova, a major focus in this scenario is the degenerate C–O core surrounded by an envelope of a former intermediate-mass AGB donor that may collapse and explode. Due to the existence of an outer envelope, r-process nucleosynthesis is expected to occur. Hypothesizing the material-rich europium (Eu) accreted by the secondary via the wind from the supernova to be in proportion to the geometric fraction of the companion with respect to the exploding donor star, we find that the estimated yield of Eu (as representative of r-process elements) per AGB supernova event is about 1 × 10?9 M ~ 5 × 10?9 M . Using the yields of Eu, the overabundance of r-process elements in CEMP-r/s stars can be accounted for. The calculated results show that the value of parameter f , standing for efficiency of wind pollution from the AGB supernova, will reach about 104, which means that the enhanced factor is much larger than unity due to the impact of gravity of the donor and the result of the gravitational focusing effect of the companion.  相似文献   

4.
5.
《New Astronomy》2007,12(2):95-103
Low metallicity very massive stars with an initial mass between 140M and 260M can be subdivided into two groups: those between 140M and 200M which produce a relatively small amount of Fe, and those with a mass between 200M and 260M where the Fe-yield ejected during the supernova explosion is enormous. We first demonstrate that the inclusion of the second group into a chemical evolutionary model for the Solar Neighbourhood predicts an early temporal evolution of Fe, which is at variance with observations whereas it cannot be excluded that the first group could have been present. We then show that a low metallicity binary with very massive components (with a mass corresponding to the first group) can be an efficient site of primary 14N production through the explosion of a binary component that has been polluted by the pair instability supernova ejecta of its companion. When we implement these massive binary 14N yields in a chemical evolution model, we conclude that very massive close binaries may be important sites of 14N enrichment during the early evolution of the Galaxy.  相似文献   

6.
The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s?1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ~1036.5 erg s?1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.  相似文献   

7.
A brief history of investigations of Lyr, an emission‐line binary and one of the first ever discovered Be stars is presented. A rather fast progress in the understanding of this enigmatic object during the past fifteen years is then discussed in some detail. The current picture of β Lyr is that it is an eclipsing binary in a stage of mass transfer between the components. The mass‐losing star is a B6‐8II object, with a mass of about 3 M, which is filling the Roche lobe and sending material towards its more massive companion at a rate of about 2 × 10—5 M yr—1. This leads to the observed rapid increase of the orbital period at a rate of 19 s per year. The mass‐gaining star is as early B star with a mass of about 13 M. It is completely hidden inside an opaque accretion disk, jet‐like structures, perpendicular to the orbital plane and a light‐scattering halo above the poles of the star. The observed radiation of the disk corresponds to an effective temperature which is much lower than what would correspond to an early B star. The disk shields the radiation of the central star in the directions along the orbital plane and redistributes it in the directions perpendicular to it. That is why the mass‐losing star appears brighter of the two in the optical region of the spectrum. At present, rather reliable estimates of all basic properties of the binary and its components are available. However, in spite of great progress in understanding the system in recent years, some disagreement between the existing models and observed phase variations still remains, both for continuum and line spectrum, which deserves further effort.  相似文献   

8.
Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M M ZAMS ≤ 5 M and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ? Π ? 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π?/Π < 10?5 yr?1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M and 3 M and 6 thermal pulses for M ZAMS = 4 M and 5 M . Stars with initial masses M ZAMS ≤ 3 M pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants (M ZAMS ≥ 4 M ) pulsate in the fundamental mode with periods Π ? 103 day. Most rapid pulsation period change with rate ?0.02 yr?1 ? Π?/Π ? ?0.01 yr?1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π?/Π ? 5 × 10?3 yr?1.  相似文献   

9.
The equations of wind accretion and variation of orbital parameters are rederived under conservation of total (rather than tangential) angular momentum, and applied to extrinsic AGB stars. These equations, together with nucleosynthesis in intrinsic AGB stars, are used to calculate heavy element overabundance for the scenario of successive pulses and mixing. The results show that wind accretion pertains when the orbital period is longer than 1300 d or 1600 d according as the initial mass of the Ba star is 2.5 M or 1.3 M, while cataclysmic variables will result if the period is shorter than 600 d in either case. The results are advantageous for interpreting a) the observations on the overabundance and orbital parameters, b) the observed lower limit of 600 d in the period of extrinsic S stars, and c) the observed fact that the mean eccentricity of Ba stars is greater than the mean eccentricities of extrinsic S stars and CH stars.  相似文献   

10.
We use the following numerical model for the collapse stage of a Type II supernova of 15 M. Our electron capture rate includes the effects of the inverse reaction and the neutron-proton mass difference. This decreases the electron density at the collapse stage and led to rather large values of the maximum inward velocity and of the corresponding mass (Umax = 3.06 × 109cm/s, Mmax=0.76 M). These larger values are more favourable for the propagation of shock after the rebounce and the triggering-off of a Type-II supernova explosion. For neutrino transport, we use a leakage model and an equilibrium diffusion model, respectively, for the thin and thick stages and a grey atmosphere model to assess the effect of neutrino precipitation on the collapse. We found this effect to be small, the energy precipitation to be not more than 10?5 the neutrino energy loss and the momentum precipitation not more than 10?6 the gravitational acceleration.  相似文献   

11.
In this paper, we report a rare reflection effect eclipsing sdB+dM binary, 2M?1533+3759. It is the seventh eclipsing sdB+dM binary that has been discovered to date. This system has an orbital period of 0.16177042 day and a velocity semi-amplitude of 71.1 km?s?1. Using a grid of zero-metallicity NLTE model atmospheres, we derived T eff=29250 K, log?g=5.58 and [He/H]=?2.37 from spectra taken near the reflection effection minimum. Lightcurve modeling resulted in a system mass ratio of 0.301 and an orbital inclination angle of 86.6°. The derived primary mass for 2M?1533+3759, 0.376±0.055 M , is significantly lower than the canonical mass (0.48 M ) found for most previously investigated sdB stars. This implies an initial progenitor mass >1.8 M , at least a main sequence A star and perhaps even one massive enough to undergo non-degenerate helium ignition.  相似文献   

12.
In this paper we explore the consequences of the recent determination of the mass m=(8.7±0.8)M of Cygnus X-1, obtained from the Quasi-Periodic Oscillation (QPO)-photon index correlation scaling, on the orbital and physical properties of the binary system HDE 226868/Cygnus X-1. By using such a result and the latest spectroscopic optical data of the HDE 226868 supergiant star we get M=(24±5)M for its mass. It turns out that deviations from the third Kepler law significant at more than 1-sigma level would occur if the inclination i of the system’s orbital plane to the plane of the sky falls outside the range ≈41–56 deg: such deviations cannot be due to the first post-Newtonian (1PN) correction to the orbital period because of its smallness; interpreted in the framework of the Newtonian theory of gravitation as due to the stellar quadrupole mass moment Q, they are unphysical because Q would take unreasonably large values. By conservatively assuming that the third Kepler law is an adequate model for the orbital period we obtain i=(48±7) deg which yields for the relative semimajor axis a=(42±9)R (≈0.2 AU).  相似文献   

13.
We report the discovery of a binary, HS 2233 + 3927, consisting of an sdB star with a faint companion. From its lightcurve the orbital period of 14,844 s, the mass ratio, the inclination, and other system parameters are derived. The companion does not contribute to the optical light of the system except through a strong reflection effect. The semi-amplitude of the radial velocity curve K 1= 89.6 km/s?1 and a mass function of f(m) = 0.013 M are determined. A preliminary spectroscopic analysis of the blue spectra using NLTE model atmospheres results in Teff= 36 500 K, log g= 5.70, and log(n He/n H) =?2.15. These parameters are typical for sdB stars, the companion is probably an M dwarf.  相似文献   

14.
Based on observations of SN 1999em, we determined the physical parameters of this supernova using hydrodynamic calculations including nonequilibrium radiative transfer. Taking the distance to SN 1999em estimated by the expanding photosphere method (EPM) to be D = 7.5 Mpc, we found the parameters of the presupernova: radius R = 450R, mass M = 15M, and explosion energy E = 7 × 1050 erg. For the distance D = 12 Mpc determined from Cepheids, R, M, and E must be increased to the following values: R = 1000R, M = 18M, and E = 1051 erg. We show that one cannot restrict oneself to using the simple analytical formulas relating the supernova and presupernova parameters to obtain reliable parameters for type-IIP presupernovae.  相似文献   

15.
A numerical method presented by Imshennik et al. (2002) is used to solve the two-dimensional axisymmetric hydrodynamic problem on the formation of a toroidal atmosphere during the collapse of an iron stellar core and outer stellar layers. An evolutionary model from Boyes et al. (1999) with a total mass of 25M is used as the initial data for the distribution of thermodynamic quantities in the outer shells of a high-mass star. Our computational region includes the outer part of the iron core (without its central part with a mass of 1M that forms the embryo of a protoneutron star at the preceding stage of the collapse) and the silicon and carbon-oxygen shells with a total mass of (1.8–2.5)M. We analyze in detail the results of three calculations in which the difference mesh and the location of the inner boundary of the computational region are varied. In the initial data, we roughly specify an angular velocity distribution that is actually justified by the final result—the formation of a hydrostatic equilibrium toroidal atmosphere with reasonable total mass, Mtot=(0.117–0.122)M, and total angular momentum, Jtot=(0.445–0.472)×1050 erg s, for the two main calculations. We compare the numerical solution with our previous analytical solution in the form of toroidal atmospheres (Imshennik and Manukovskii 2000). This comparison indicates that they are identical if we take into account the more general and complex equation of state with a nonzero temperature and self-gravitation effects in the atmosphere. Our numerical calculations, first, prove the stability of toroidal atmospheres on characteristic hydrodynamic time scales and, second, show the possibility of sporadic fragmentation of these atmospheres even after a hydrodynamic equilibrium is established. The calculations were carried out under the assumption of equatorial symmetry of the problem and up to relatively long time scales (~10 s).  相似文献   

16.
We consider the evolutionary scenarios for close binaries that lead to the formation of semidetached systems in which a white dwarf can accumulate the Chandrasekhar mass through mass accretion from its companion, a main sequence star or a subgiant of mass M ~ 2M. Such dwarfs probably explode as type-Ia supernovae or collapse to form a neutron star. The population synthesis method is used to analyze the dependence of the model rate of these events in the Galaxy on the common envelope parameter, the mass transfer rate, and the response of a main-sequence star to helium accretion at an intermediate evolutionary stage. The rate of explosions in semidetached systems of this type in the Galaxy was found to be no higher than ?0.2×10?3 yr?1, which is less than 10% of the lower level for the empirically estimated SNe Ia rate.  相似文献   

17.
ASASSN-15lh is a super luminous supernova, whose light curve is similar to that of the type Ia supernova (SN Ia). Since the luminosity of SN Ia is directly related to the decay of 56Ni, in this paper, we consider the de-excitation energy of the new nuclei, and calculate the energy generated by the decay of 56Ni in the explosive environment of ASASSN-15lh. The calculated mass of 56Ni needed by the ASASSN-15lh explosion is 31.32 M. This result agrees with the estimation of the mass of 56Ni ≥ 30 M derived from the observed light curve of ASASSN-15lh. No agreement has reached for the explosion mechanism of supernova ASASSN-15lh so far. The calculation in this paper provides a reference for the further study on the progenitor and explosion mechanism of the supernova ASASSN-15lh.  相似文献   

18.
An approximate orbit of the wide visual binary star ADS 9173 A(Bb) with a period of ~6000 yr has been determined for the first time by the method of apparent motion parameters. The orbit was computed using a short (1982–2004) arc of photographic observations obtained with the 26-inch Pulkovo Observatory refractor and the Hipparcos parallax. Agreement of the new orbit with the observations from the WDS catalog beginning in 1832 serves as a check. The errors in the orbital elements are large, but the orientation elements of the orbital plane (i and Ω) were estimated reliably. Component B has an invisible spectroscopic companion with a period of 4.9 yr. An astrometric orbit of Bb consistent with radial velocity measurements was determined from the residuals to the relative orbital motion of A(Bb). The orbital planes are nearly coplanar. If the mass of component B is taken in accordance with the mass—luminosity relation, 1.5 M , and the parallax is 0.″021, then the mass of the secondary component is no less than 0.5M . Component A may also be a long-period binary system.  相似文献   

19.
Roche-lobe overflow and common envelope evolution are very important in binary evolution, which is believed to be the main evolutionary channel to hot subdwarf stars. The details of these processes are difficult to model, but adiabatic expansion provides an excellent approximation to the structure of a donor star undergoing dynamical time scale mass transfer. We can use this model to study the responses of stars of various masses and evolutionary stages as potential donor stars, with the urgent goal of obtaining more accurate stability criteria for dynamical mass transfer in binary population synthesis studies. As examples, we describe here several models with the initial masses equal to 1 M and 10 M , and identify potential limitations to the use of our results for giant-branch stars.  相似文献   

20.
Based on RATAN-600 21-cm H I line observations with an angular resolution of 2.4', we studied the neutral-hydrogen distribution in the region of the supernova remnant (SNR) S 147 (G180.0-1.7). We detected a rotating shell of neutral gas immediately adjacent to the SNR that is expanding at a velocity of 20 km s?1. The H I shell is less distinct in the southeastern part and at negative radial velocities. The outer shell diameter is 90 pc; the H I mass in the shell is 2.2 × 104M. These data allowed us to estimate the SNR age, 6.5×105 yr, and the initial explosion energy, 2.2×1051 erg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号