首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sections up to 3·5 m deep cut through the upper rectilinear segment of relict, vegetated talus slopes at the foot of the Trotternish escarpment reveal stacked debris-flow deposits intercalated with occasional slopewash horizons and buried organic soils. Radiocarbon dating of buried soil horizons indicates that reworking of sediment by debris flows predates 5·9–5·6 Cal ka BP , and has been intermittently active throughout the late Holocene. Particle size analyses of 18 bulk samples from these units indicates that c. 27–30 per cent of the talus deposit is composed of fine (<2 mm) sediment. Sedimentological comparison with tills excludes a glacigenic origin for the talus debris, and the angularity of constituent clasts suggests that in situ weathering has been insignificant in generating fine material. We conclude that the fine sediment within the talus is derived primarily by granular weathering of the rockwall, with syndepositional accumulation of both fine and coarse debris, implying that c. 27–30 per cent of rockwall retreat since deglaciation reflects granular weathering rather than rockfall. The abundance of fines within the talus deposits is inferred to have been of critical importance in facilitating build-up of porewater pressures during rainstorms, leading to episodic failure and flow of debris on the upper parts of the slope. A wider implication of these findings is that the mechanical properties of talus slopes cannot be regarded as those of free-draining accumulations of coarse clasts, and that models that treat talus slopes as such have limited value in explaining their form and evolution. Our findings lend support to models that envisage the upper straight slope on talus accumulations as the product of mass-transport as well as rockfall, and indicate that episodic debris flow has been the primary agent of mass-transport at this site. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
This paper deals with the effects of wind on rockwall dynamics. On 5 and 6 January, 1988 very strong northwest winds (blizzard) were blowing onto the rockwall of Mount Saint-Pierre (alt.: 424 m), Gaspésie, Québec (Canada). The most violent recorded squall reached 99·4 km h?1. During this event, the summit plateau received a large amount of aeolian sediments originating from the shale rockwall that forms the mountain's northwest side. In the 15 to 20 m wide by 75 m long belt located along the top of the rockwall, over a 1200 m2 area, a continuous layer of debris completely covered the snow. This layer of debris had a mean thickness of 11·4 mm, which represents an accumulated volume in the order of 13 m3. Largely dominated by sand and granules (2–4 mm), the 28 samples collected for grain-size analysis also contained numerous thin shale flakes, many of which were longer than 10 mm. The largest flake measured had a width of 134 mm and a weight of 164·3 g. Six available 14C dates provide information concerning mean cliff-top aeolian sedimentation rate for the last thousand years (c. 1·8 mmyr?1).  相似文献   

3.
Qinghai Lake, on the northeastern Qinghai-Tibetan Plateau, is the largest extant closed-basin lake in China, and has been the subject of numerous palaeoclimatological and palaeoenvironmental studies. In this study, 32 samples of aeolian sand, loess and palaeosol at six sites, and 1 sample of shoreline deposits underlying aeolian deposits were dated using optically stimulated luminescence (OSL). Where available, OSL ages are in agreement with previously published 14C ages. Our dating results, in combination with previous published ages on aeolian deposits showed that: (1) The oldest aeolian deposits around Qinghai Lake are in excess of 165 ka. (2) Aeolian deposition then began at ∼14 ka in the Qinghai Lake area. Periods of palaeosol formation occurred at ∼16.9 ka, ∼12.2–11 ka, ∼10–9 ka, ∼5.2–4 ka, and ∼3.9–0.7 ka. (3) The accumulation intervals of palaeosols are generally consistent with drilling-core-based environmental change proxies, indicating that palaeosols were formed during wet periods with higher vegetation cover. (4) A depositional hiatus period of ∼40–50 ka exists between the surface mantle aeolian deposits and underlying gravel deposits. (5) Lake levels during the Holocene did not exceed 3205.2 m elevation (11.8 m above recent lake level of April, 2010).  相似文献   

4.
Activities of 26Al and 10Be in five chert clasts sampled from two beach ridges of late Pleistocene Lake Lisan, precursor of the Dead Sea in southern Israel, indicate low rates of chert bedrock erosion and complex exposure, burial, and by inference, transport histories. The chert clasts were derived from the Senonian Mishash Formation, a chert‐bearing chalk, which is widely exposed in the Nahal Zin drainage basin, the drainage system that supplied most of the material to the beach ridges. Simple exposure ages, assuming only exposure at the beach ridge sampling sites, range from 35 to 354 ky; using the ratio 26Al/10Be, total clast histories range from 0·46 to 4·3 My, unrelated to the clasts' current position and exposure period on the late Pleistocene beach ridges, 160–177 m below sea level. Optically stimulated luminescence dating of fine sediments from the same and nearby beach ridges yielded ages of 20·0 ± 1·4 ka and 36·1 ± 3·3 ka. These ages are supported by the degree of soil development on the beach ridges and correspond well with previously determined ages of Lake Lisan, which suggest that the lake reached its highest stand around 27 000 cal. years BP . If the clasts were exposed only once and than buried beyond the range of significant cosmogenic nuclide production, then the minimum initial exposure and the total burial times before delivery to the beach ridge are in the ranges 50–1300 ky and 390–3130 ky respectively. Alternatively, the initial cosmogenic dosing could have occurred during steady erosion of the source bedrock. Back calculating such rates of rock erosion suggests values between 0·4 and 12 m My?1. The relatively long burial periods indicate extended sediment storage as colluvium on slopes and/or as alluvial deposits in river terraces. Some clasts may have been stored for long periods in abandoned Pliocene and early Pleistocene routes of Nahal Zin to the Mediterranean before being transported again back into the Nahal Zin drainage system and washed on to the shores of Lake Lisan during the late Pleistocene. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
利用埃及北部Faiyum盆地获得的高取芯率沉积物岩芯,进行沉积物多种磁性参数的测量,结合有机碳、介形虫、粒度等分析,在AMS14C加速器测年的基础上,建立全新世以来湖泊沉积物磁性特征变化的时间序列.结果表明,粒度效应以及沉积后的各种次生作用对沉积物的磁性特征没有明显的影响,磁性变化主要反映了沉积物不同来源组成的相对变化.全新世前沉积物磁性较弱,主要含不完全反铁磁性矿物,与周边沙漠的物质相似,结合其粒度特征,沉积物来源应以近源物质为主.全新世早中期(约10 5.4 ka BP)沉积物磁性变化相对稳定,有机质含量也较高,指示了来自尼罗河较为稳定的物质供应;而大约5.4 ka BP尤其最近约4.2 ka BP以来,磁性的明显变化反映了流域降水减少情况下,来自青尼河物质贡献的相对增加;最近约2.0 ka BP以来沉积物的磁性变化,则更多地与盆地人类活动的强化有关.总体而言,Faiyum盆地全新世以来的环境演变主要受控于全新世以来尼罗河与盆地的水力学联系.即:全新世前盆地未与尼罗河连通时,沉积物主要来源于周边沙漠的风成物质;而受全新世早-中期来流域季风降水增加的影响,泛滥的尼罗河为盆地提供了相对稳定的物质供应,湖泊也处于高湖面;全新世晚期以来,随着流域干旱化的加剧,尼罗河与盆地的连通性开始减弱,来自高磁性的青尼罗河物质贡献开始相对增加.最近约2.0 ka BP以来,虽然仍有人工运河连接尼罗河与盆地,但沉积物磁性的显著变化更多地反映了盆地人类活动的不断强化.  相似文献   

6.
One of the goals for paleaoenvironmental research is to predict the tendency of future climate and environmental changes based on the understanding of the past. The key approach is to find similar pictures which happened in the past. By understanding the background and mechanism of the paleaoenvironmen- tal changes, reliable parameters and verifications can be provided for the numerical model to predict the tendency of future climate and environmental changes. The Mid-Holocene as the nearest …  相似文献   

7.
Volumetric calculations of slope deposits, direct measurements of rockwall retreat and chronological control based on lichenometry provide a wide range of rockwall retreat rates in Svalbard (0–1580 mm ka−1) that appears consistent with previous evaluations from other Arctic areas. In northwest and central Spitsbergen (79°N), a triple-rate rockwall retreat is suggested for the last two millennia: very slow biogenic flaking (2 mm ka−1), moderate retreat due to frost shattering (100 ka−1) and rapid retreat associated with post-glacial stress relaxation (c. 1000 mm ka−1). Examination of the distribution of various processes indicates that the Holocene retreat of most rockwalls has not exceeded one or two metres. Bedrock conditions appear to be the main control on retreat rates. The massiveness of igneous and metamorphic outcrops, widespread in Arctic shield areas, largely accounts for the slowness of rockwall retreat, which on these lithologies is primarily due to chemical and biological processes. More rapid rates are usually associated with stress relaxation following glacial surges or with local frost susceptibility of bedrock, often where faulting has induced high joint density. At such sites, rockwall retreat rates are of the same order of magnitude as those reported from Alpine areas (1000–3000 mm ka−1) where both bedrock weakening due to tectonic stresses and the greater height of steep rockwalls account for the more rapid rockwall retreat rate. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
Based on interpolation of thermoluminescence dates and the mean accumulation rate of 0.034 mm yr?1, four cycles of pedogenic CaCO3 accumulation are found within the Loveland Loess: 415–325 ka, 325–250 ka, 250–195 ka and 195–95 ka. The four CaCO3 peaks correspond chronologically to marine oxygen isotope stages 11, 9, 7 and 5, respectively. The early Wisconsin (95–70 ka) was characterized by sand dune activity. The reddish pedocomplex was formed from 70 to 35 ka under relatively warm and moist climatic conditions with a very slow rate of silt accumulation (0·016 mm yr?1). The Gilman Canyon pedocomplex, enriched in organic matter and dated at 35–20 ka, was formed under a strong physical weathering regime and a relatively high rate of silt accumulation (0·15 mm yr?1), indicating a windy, relatively moist, probably cool environment. It developed when the Laurentide ice sheet was advancing and dust content in Greenland ice core was low. The Peoria Loess was accumulated at a rate of 0·3 mm yr?1 in central Kansas under cold dry conditions when the ice sheet fluctuated around its maximum position and the dust content in the Greenland ice core was the highest. Even the warm substage around 13 ka has some corresponding evidence in the central Great Plains. The well-developed Brady Soil, dated at 10·5–8·5 ka, indicates that the early Holocene was the optimal time for soil development since 20 ka. The poorly weathered Bignell Loess might have been deposited during the Altithermal Period from 8·5 to 6 ka.  相似文献   

9.
Variation in the rubidium to strontium (Rb/Sr) ratio of the loess–palaeosol sequences has been proposed to reflect the degree of pedogenesis and weathering in the northwestern region of China. To characterize the Rb/Sr ratio of the dissolved loads of a single catchment, we analysed a 12·08 m sediment core from Daihai Lake in Inner Mongolia, north China. Dating control was provided by 210Pb, 137Cs and AMS‐14C. Sequential extraction experiments were conducted to investigate the concentrations of Rb and Sr on various chemical fractions in the lake sediments. Down‐core variation in the Rb/Sr ratios provides a record of Holocene weathering history. From 9 to 3·5 ka bp , accelerated chemical weathering was experienced throughout the Daihai catchment under mainly warm and humid conditions, and this reached a maximum at c. 5 ka bp . However, weathering was reduced between c. 8·25 and 7·90 ka bp , which may reflect the global 8·2 ka cooling event. After c. 2·5 ka bp , increased Rb/Sr ratios with higher frequency of fluctuations indicate reduced weathering within the Daihai catchment. The highest Rb/Sr ratios in the Little Ice Age lake sediments indicate the weakest phase of Holocene chemical weathering, resulting from a marked reduction in Sr flux into the basin. The Rb/Sr record also shows an enhancement of chemical weathering under today's climate, but its intensity is less than that of the Medieval Warm Period. Increased Rb/Sr in lake sediment corresponding to reduced catchment weathering is in striking contrast to Rb/Sr decrease in the glacial loess layers in the loess–palaeosol sequence. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This study focuses on the late Quaternary landscape evolution in the Chifeng region of Inner Mongolia, China, its relations to the history of the Pleistocene‐Holocene loess accumulation, erosion and redeposition, and their impact on human occupation. Based on 57 optically stimulated luminescence (OSL) ages of loess sediments, fluvial sand and floodplain deposits accumulated on the hill slopes and floodplains, we conclude that during most of the Pleistocene period the region was blanketed by a thick layer of aeolian loess, as well as by alluvial and fluvial deposits. The loess section is divided into two main units that are separated by unconformity. The OSL ages at the top of the lower reddish loess unit yielded an approximate age of 193 ka, roughly corresponding to the transition from MIS 7 to 6, though they could be older. The upper gray loess unit accumulated during the upper Pleistocene glacial phase (MIS 4–3) at a mean accumulation rate of 0·22 m/ka. Parallel to the loess accumulation on top of the hilly topography, active fans were operating during MIS 4–2 at the outlet of large gullies surrounding the major valley at a mean accumulation rate of 0·24 m/ka. This co‐accumulation indicates that gullies have been a long‐term geomorphic feature at the margins of the Gobi Desert since at least the middle Pleistocene. During the Holocene, the erosion of the Pleistocene loess on the hills led to the burial of the valley floors by the redeposited sediments at a rate that decreases from 3·2 m/ka near the hills to 1–0·4 m/ka1 in the central part of the Chifeng Valley. This rapid accumulation and the frequent shifts of the courses of the river prevented the construction of permanent settlements in the valley floors, a situation which changed only with improved man‐made control of the local rivers from the tenth century AD. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The middle valley of the river Ain (Jura) cuts through glacio-lacustrine deposits laid down in an ice-dammed lake during the most recent glacial advance. The total volume eroded is about 6·21 × 108 m3for a surface area of 3·7 × 107 m2. Erosion occurred between 18 ka BP and 6 ka BP , i.e. over a duration of some 12 ka. Sediment yield from the area was of the order of 2500 t km−2 a−1, which is comparable with modern-day sediment yield from NW African badlands. These high values are ascribed to the amenability of glacio-lacustrine deposits to mechanical weathering and to the rapid geomorphological changes that affected glacial and paraglacial sedimentary cover after the retreat of the ice. The valley slopes were destabilized by mass wasting (earthflow and mudflow), which was the predominant erosional process. The slopes are currently stabilized or very exceptionally active. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory‐calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature–resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower‐porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice‐rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris–bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High‐resolution LiDAR‐scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm yr–1, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory‐calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice‐rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We applied new granulometric techniques to the various surfaces of the Hanaupah Fan, Death Valley, California, namely the Q1 surface, with an estimated age of 800–490 ka, the younger Q2 (170–105 ka) and Q3 (50–14 ka) surfaces, the <14 ka deposits of the incised channel, and to a (c. 14 ka) Lake Manly shoreline deposit at the northern periphery of the fan. We used these techniques to generate quantitative information on surface clast grain-size distributions, clast sphericity, roundness, and clast orientation to provide a data set that could be used to define fan-segment surfaces, and to help interpret fan genesis. Grain-size analyses were carried out by photo-sieving of 139 surface pictures, by petrographic identification of samples taken in the incised channel, and by identification and measuring of the largest clasts (1452 measurements) on the Q3 surface. The results show that all fan-segment surfaces, regardless of age, have similar size distributions, with a well-defined gravel mode of −2·3 to −3·0 phi, and are poorly to moderately sorted. Samples from the incised channel have distributions that are very similar to each other, regardless of distance from the apex, but display reduced sorting compared to the fan surfaces (which largely lack fines, perhaps from winnowing by secondary overland flow). Only the shoreline deposit is different from the other elements, showing a much narrower, well-defined gravel mode (−3·0 phi), and is moderately well sorted. Sphericity and roundness of clasts on all surfaces show only minor differences, similar to the other sedimentary parameters, indicating a remarkable homogeneity of the surfaces of the sediment body. In addition, measurements of the largest clasts (>100 cm long axis) on the Q3 surface showed no discernible trend either with radial distance or with rock type. These data suggest large depositional episodes that produce extensive sedimentary units without differentiation relative to distance from the source. Of the examined parameters, clast orientation is the best predictor of relative age of fan surfaces. Clast orientation in the main channel is bimodal, i.e. the long axes of clasts are either at right angles or parallel to transport direction. This bimodality disappears with increasing age, and the preferred orientation becomes unimodal (long clast axes normal to transport direction) on the Q1 surface. Although the causes of this change are still in debate, use of this parameter as a relative-age dating tool seems possible. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
We use cosmogenic 10Be concentrations in amalgamated rock samples from active, ice‐cored medial moraines to constrain glacial valley sidewall backwearing rates in the Kichatna Mountains, Alaska Range, Alaska. This dramatic landscape is carved into a small ~65 Ma granitic pluton about 100 km west of Denali, where kilometer‐tall rock walls and ‘cathedral’ spires tower over a radial array of over a dozen valley glaciers. These supraglacial landforms erode primarily by rockfall, but erosion rates are difficult to determine. We use cosmogenic 10Be to measure rockwall backwearing rates on timescales of 103–104 years, with a straightforward sampling strategy that exploits ablation‐dominated medial moraines. A medial moraine and its associated englacial debris serve as a conveyor system, bringing supraglacial rockfall debris from accumulation‐zone valley walls to the moraine crest in the ablation zone. We discuss quantitatively several factors that complicate interpretation of cosmogenic concentrations in this material, including the complex scaling of production rates in very steep terrain, the stochastic nature of the rockfall erosion process, the unmixed nature of the moraine sediment, and additional cosmogenic accumulation during transport of the sediment. We sampled medial moraines on each of three glaciers of different sizes and topographic aspects. All three moraines are sourced in areas with identical rock and similar sidewall relief of ~1 km. Each sample was amalgamated from 25 to 35 clasts collected over a 1‐km longitudinal transect of each moraine. Two of the glaciers yield similar 10Be concentrations (~1·6–2·2 × 104 at/g) and minimum sidewall slope‐normal erosion rates (~0·5–0·7 mm/yr). The lowest 10Be concentrations (8 × 103 at/g) and the highest erosion rates (1·3 mm/yr) come from the largest glacier in the range with the lowest late‐summer snowline. These rates are reasonable in an alpine glacial setting, and are much faster than long‐term exhumation rates of the western Alaska Range as determined by thermochronometric studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
吉兰泰盐湖沉积物孢粉记录的季风边缘区全新世气候演化   总被引:2,自引:1,他引:1  
全新世气候具有不稳定性,且存在着区域差异,在季风边缘区尤为显著.因此,本研究选取季风边缘区吉兰泰盐湖沉积物的孢粉记录并结合AMS14C测年结果,对该地区全新世的古植被演化及古气候变化历史进行了重建.结果表明,在全新世阶段,该地区植被类型未发生变化,以干旱的荒漠植被为主.早全新世(10.5 8.5 cal ka BP),以蒿属孢粉为主,伴随出现少量藜科、禾本科及麻黄属孢粉,蒿藜比(A/C比值)相对稳定(4.11左右),指示全新世早期气候逐步转湿的过程,在8.5 cal ka BP,蒿属孢粉数量下降且被藜科孢粉取代,指示一次明显气候干旱事件;中全新世(8.5 3.5 cal ka BP),蒿属孢粉含量增加及藜科孢粉含量降低,A/C比值在7.1 cal ka BP左右达到峰值,指示该地区中全新世气候最为湿润;晚全新世(3.5 cal ka BP至今),藜科孢粉含量增加且超过早全新世,A/C比值低至3.66,区域呈现明显的干旱化趋势.此外,结合吉兰泰盐湖沉积物矿物组成结果,发现中全新世湖泊沉积物中,钙芒硝大量出现,一定程度上指示降水量增多所带来的淡水注入,与孢粉指标指示该阶段湿润的结果一致.通过区域对比,发现吉兰泰地区在全新世时期的气候演化模式与东亚季风区具有较好的一致性,表明该地区受到东亚夏季风的影响较大,尤其是在中全新世,东亚夏季风增强,带来较多的降水,气候湿润.  相似文献   

16.
The El Niño–Southern Oscillation (ENSO) is a climatic phenomenon that affects socio-economical welfare in vast areas in the world. A continuous record of Holocene ENSO related climate variability of the Indo-Pacific Warm pool (IPWP) is constructed on the basis of stable oxygen isotopes in shells of planktic foraminifera from a sediment core in the western Pacific Ocean. At the centennial scale, variations in the stable oxygen isotope signal (δ18O) are thought be a representation of ENSO variability, although an imprint of local conditions cannot be entirely excluded. The record for the early Holocene (10.3–6 ka BP) shows, in comparison with the mid- to late Holocene, small amplitude variations in the δ18O record of up to 0.3‰ indicating relatively stable and warm sea surface conditions. The mid- to late Holocene (6–2 ka BP) exemplified higher variability in δ18O and thus in oceanic IPWP conditions. Climatically, we interpret this change (5.5–4.2 ka BP) as a phenomenon induced by variability in frequency and/or intensity changes of El Niño. In the period 4.2–2 ka BP we identified several periods, centred on 1.9, 2.1, 2.7, 3.3, 3.7 and 4.2 ka BP, with in general heavy δ18O values. During these periods, the IPWP was relocated to a more eastward position, enhancing the susceptibility for El Niño-like conditions at the core site. Over the last 2000 yr precipitation increased in the area as a response to an increase in Asian monsoon strength, resulting in a freshening of the surface waters. This study corroborates previous findings that the present-day ENSO activity started around 5.5 ka BP.  相似文献   

17.
Prehistoric human history on the Tibetan Plateau is a hotly debated topic. Archaeological research on the plateau during the past few decades has enormously improved our understanding of the topic and makes it possible for us to consider the processes and mechanisms of prehistoric human migration to the region. By reviewing the published archaeological research on the Tibetan Plateau, we propose that the first people on the plateau initially spread into the He-Huang region from the Chinese Loess Plateau, and then moved to the low elevation Northeastern Tibetan Plateau and perhaps subsequently to the entire plateau. This process consisted of four stages.(1) During the climatic amelioration of the Last Deglacial period(15–11.6 ka BP), Upper Paleolithic hunter-gatherers with a developed microlithic technology first spread into the Northeastern Tibetan Plateau.(2) In the early-mid Holocene(11.6–6 ka BP), Epipaleolithic microlithic hunter-gatherers were widely distributed on the northeastern plateau and spread southwards to the interior plateau, possibly with millet agriculture developed in the neighboring low elevation regions.(3) In the mid-late Holocene(6–4 ka BP), Neolithic millet farmers spread into low elevation river valleys in the northeastern and southeastern plateau areas.(4) In the late Holocene(4–2.3 ka BP), Bronze Age barley and wheat farmers further settled on the high elevation regions of the Tibetan Plateau, especially after 3.6 ka BP. Finally, we suggest that all of the reported Paleolithic sites earlier than the LGM on the Tibetan Plateau need further examination.  相似文献   

18.
The determination of sediment storage is a critical parameter in sediment budget analyses. But, in many sediment budget studies the quantification of magnitude and time‐scale of sediment storage is still the weakest part and often relies on crude estimations only, especially in large drainage basins (>100 km2). We present a new approach to storage quantification in a meso‐scale alpine catchment of the Swiss Alps (Turtmann Valley, 110 km2). The quantification of depositional volumes was performed by combining geophysical surveys and geographic information system (GIS) modelling techniques. Mean thickness values of each landform type calculated from these data was used to estimate the sediment volume in the hanging valleys and the trough slopes. Sediment volume of the remaining subsystems was determined by modelling an assumed parabolic bedrock surface using digital elevation model (DEM) data. A total sediment volume of 781·3×106–1005·7×106 m3 is deposited in the Turtmann Valley. Over 60% of this volume is stored in the 13 hanging valleys. Moraine landforms contain over 60% of the deposits in the hanging valleys followed by sediment stored on slopes (20%) and rock glaciers (15%). For the first time, a detailed quantification of different storage types was achieved in a catchment of this size. Sediment volumes have been used to calculate mean denudation rates for the different processes ranging from 0·1 to 2·6 mm/a based on a time span of 10 ka. As the quantification approach includes a number of assumptions and various sources of error the values given represent the order of magnitude of sediment storage that has to be expected in a catchment of this size. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The geological evolution of Merapi volcano, Central Java, Indonesia   总被引:1,自引:0,他引:1  
Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170?ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109?±?60?ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138?±?3?ka; 135?±?3?ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30?ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8?±?1.5?ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792?±?90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872?AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi.  相似文献   

20.
Coarse‐gravel beaches are common features along the eastern margin of Tasman Bay, at the north end of South Island, New Zealand. Although these features have traditionally been interpreted as spits, contemporary incident wave energy appears too small to transport boulders and cobbles persistently along the beaches and platforms by longshore drift. An alternative explanation suggests that boulder beaches are essentially derived in situ from resistant bedrock, which lies seaward and was buried by gravel during the Holocene sea level rise. Wind, wave and clast size data from Cable Bay and the Nelson Boulder Bank were used to resolve this problem. Wave and wind data indicate that waves reaching these areas are derived locally in Tasman Bay, and are limited in size and energy. Hindcasting predicts a 4·7 m wave could propagate from Tasman Bay. However, during Cyclone Yalli, the most intense storm in nearly 40 years of wind records, the largest wave measured in the nearby area of Cable Bay was only 2·7 m high. Maximum orbital velocity on the seabed beneath a 4·7 m is calculated to be 2·9 m s?1, which cannot initiate transport of clasts greater than 0·15 m in diameter. Clasts on the gravel platforms have average diameters greater than this, but some clasts may be as large as 1·0 m in diameter. By comparison, a swash run‐up method predicts that a wave 4·7 m high can transport clasts no larger than 0·3 m in diameter. These data and approximate calculations strongly suggest that the present wave environment in eastern Tasman Bay is not capable of consistently transporting clasts on the boulder platforms by longshore drift. Reduced sea levels in the pre‐Holocene period would further reduce wave energies available in Tasman Bay. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号