首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An iterative method is presented to compute the transfer function matrix of combined primary–secondary systems for seismic response analysis. It accounts for non‐proportional damping and dynamic interaction of the combined system. A closed form sequence is developed for the iterative computation of the transfer function matrix. Such sequence is assembled using independently the real classical mode frequencies, shapes and damping ratios of the primary system, and the natural frequency and critical damping ratio of the SDOF secondary system. The necessary and sufficient condition for convergence of the sequence is given in the paper. The method is illustrated through a couple of examples, including one of an appendix connected to a multi‐storey shear building. Convergence of the method is thoroughly analysed and peak responses are obtained using a spectral density function approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Current reliability‐based control techniques have been successfully applied to linear systems; however, incorporation of stochastic nonlinear behavior of systems in such control designs remains a challenge. This paper presents two reliability‐based control algorithms that minimize failure probabilities of nonlinear hysteretic systems subjected to stochastic excitations. The proposed methods include constrained reliability‐based control (CRC) and unconstrained reliability‐based control (URC) algorithms. Accurate probabilistic estimates of nonlinear system responses to stochastic excitations are derived analytically using enhanced stochastic averaging of energy envelope proposed previously by the authors. Convolving these demand estimates with capacity models yields the reliability of nonlinear systems in the control design process. The CRC design employs the first‐level and second‐level optimizations sequentially where the first‐level optimization solves the Hamilton–Jacobi–Bellman equation and the second‐level optimization searches for optimal objective function parameters to minimize the probability of failure. In the URC design, a single optimization minimizes the probability of failure by directly searching for the optimal control gain. Application of the proposed control algorithms to a building on nonlinear foundation has shown noticeable improvements in system performance under various stochastic excitations. The URC design appears to be the most optimal method as it reduced the probability of slight damage to 8.7%, compared with 11.6% and 19.2% for the case of CRC and a stochastic linear quadratic regulator, respectively. Under the Kobe ground motion, the normalized peak drift displacement with respect to stochastic linear quadratic regulator is reduced to 0.78 and 0.81 for the URC and CRC cases, respectively, at comparable control force levels. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
A new formulation of the transfer function has been proposed for the seismic analysis of linear, multiply supported secondary systems. The transfer function for a given response quantity has been formulated by directly using the fixed-base modes of the primary and secondary systems. This approach is exact and does not involve the determination of the combined system properties. Further, it is applicable to the secondary systems with various mass ratios and configurations. A few example primary–secondary systems have been considered to illustrate the proposed formulation in case of different mass ratios. It has also been shown how the proposed formulation can be used to obtain reasonably accurate stochastic estimates of the secondary system responses. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
A mode‐acceleration approach has been proposed for estimating the seismic response of a linear, classically‐damped, multiply‐supported secondary system within the framework of a power spectral density function (PSDF)‐based stochastic approach, while the primary system is linear and classically‐damped. Response transfer functions have been formulated in terms of chosen numbers of fixed‐base modes of the primary and secondary systems. The proposed approach does not involve the determination of combined system properties, and is applicable to the secondary systems with high mass ratios also. Through a few example primary–secondary systems and an example band‐limited white noise excitation, it has been shown that this approach leads to reasonably accurate results when only a few primary and secondary modes are to be considered. The proposed formulation has been used to obtain input data for a decoupled response spectrum analysis of secondary systems. This data accurately accounts for the effects of interaction between the primary and secondary systems. It is shown to lead to substantial reductions in the errors associated with the envelope spectrum method in the case of moderately heavy to heavy secondary systems and when the spatial coupling does not play a major role. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The current study proposes an analytical closed-form solution for the dynamic distress of rigid fixed-base retaining systems aiming at evaluating the main assumptions and limitations of the pertinent available elasticity-based methods. The new solution is actually an extension of the well-known model of Wood and is capable of evaluating the dynamic distress of either a single or a pair of rigid fixed-base walls interacting with each other, in the case of harmonic base loading. Wall distress is mainly evaluated in terms of dynamic earth pressures, shear forces and bending moments, while the original concept of a “distress spectrum” is introduced as a potential new tool for the seismic design of retaining structures. Distress and wall deformation are interrelated in a number of three-dimensional graphs, where dynamic interaction phenomena are evident. Finally, given the rigorous nature of the new solution, its results verify qualitatively and quantitatively the negligible amplitude of the computational errors of the approximate elasticity-based solutions proposed in the literature.  相似文献   

6.
带TMD的结构基于动力可靠性约束的优化设计   总被引:4,自引:0,他引:4  
本文在运用复模态法求得多自由度带TMD结构随机地震响应解析解的基础上.采用基于动力可靠性约束的优化设计方法对TMD装置参数的优化取值进行了系统研究,以结构最大位移响应的期望值为目标函数,以TMD装置响应的动力可靠性为约束条件,运用罚函数法获得到TMD装置的优化设计参数.并给出了算例,从而建立了带TMD结构基于动力可靠性约束的抗震优化设计的一整套方法,本文方法也可用于基础隔震结构、带TLD减震结构以及带TMD和TLD抗风结构的优化设计。  相似文献   

7.
A formulation has been proposed for the transfer function of a secondary system response while the primary system is supported on a compliant soil and the excitation comprises of translational ground motion at its base. For this purpose, the earlier formulation of the authors for the fixed-base case, which exactly considers the interaction between the two sub-systems and is based on the use of their individual modal properties, has been extended. Also, the concept of modifying the input excitation for the interaction accelerations (associated with the soil–structure interaction) has been used. An example P–S system and three example earthquake excitations have been considered to illustrate the proposed formulation and to estimate the expected response peak amplitudes in the secondary system. This study shows that ‘detuning’ of the tuned systems may occur in case of significant soil–structure interaction. Further, for the reasons of both safety and economy, ignoring the interaction effects in designing the secondary systems may not always be justified. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The concept of polynomial‐fraction approximation is explored in this article to develop a nested type of systematic lumped‐parameter model for unbounded soil. Based on the optimal coefficients determined from the flexibility formulation, the reciprocal of the polynomial‐fraction is first taken to represent the dynamic stiffness function of foundation and then decomposed into a linear polynomial and another polynomial‐fraction. The nested division introduced in this study is operated to generate a nested form for this decomposed polynomial‐fraction, which directly corresponds to a nested discrete‐element model. The nested type of lumped‐parameter model is then easily constructed by connecting this nested discrete‐element model in series with another simple discrete‐element model corresponding to the linear polynomial. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Passive structural control techniques are generally used as seismic rehabilitation and retrofit methodologies for existing structures. A poorly explored and exciting opportunity within structural seismic control research is represented by the possibility to design new structural forms and configurations, such as slender buildings, without compromising the structural performance through an integrated design approach. In this paper, with reference to viscous dampers, an integrated seismic design procedure of the elastic stiffness resources and viscoelastic properties of a dissipative bracing‐damper system is proposed and developed to ensure a seismic design performance, within the displacement‐based seismic design, explicitly taking into account the dynamic behaviour both of the structural and control systems. The optimal integrated seismic design is defined as the combination of the variables that minimizes a suitable index, representing an optimized objective function. Numerical examples of the proposed integrated cost‐effectiveness seismic design approach both on an equivalent SDOF system and a proportionally damped MDOF integrated system are developed defining the design variables, which minimize the cost index. Validation of the effectiveness of the proposed integrated design procedure is carried out by evaluating the average displacement of the time‐history responses to seven unscaled acceleration records selected according to EC8 provisions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A critical, textbook-like review of the generalized modal superposition method of evaluating the dynamic response of nonclassically damped linear systems is presented, which it is hoped will increase the attractiveness of the method to structural engineers and its application in structural engineering practice and research. Special attention is given to identifying the physical significance of the various elements of the solution and to simplifying its implementation. It is shown that the displacements of a non-classically damped n-degree-of-freedom system may be expressed as a linear combination of the displacements and velocities of n similarly excited single-degree-of-freedom systems, and that once the natural frequencies of vibration of the system have been determined, its response to an arbitrary excitation may be computed with only minimal computational effort beyond that required for the analysis of a classically damped system of the same size. The concepts involved are illustrated by a series of examples, and comprehensive numerical data for a three-degree-of-freedom system are presented which elucidate the effects of several important parameters. The exact solutions for the system are also compared over a wide range of conditions with those computed approximately considering the system to be classically damped, and the interrelationship of two sets of solutions is discussed.  相似文献   

11.
A discussion of the effects of soil-structure interaction on the dynamic response of linear structures which respond as single-degree-of-freedom systems in their fixed-base condition is presented. The structures are presumed to be supported at the surface of a homogeneous, elastic halfspace and to be excited at the base. The free-field ground motions investigated include a harmonic motion, a relatively simple pulse-type excitation and an actual earthquake record. Comprehensive response spectra are presented for a range of the parameters defining the problem, and the results are used to assess the accuracy of a simple, approximate method of analysis in which the system is represented by a viscously damped, simple oscillator. Special attention is given to defining the conditions under which the interaction effect is of sufficient importance to warrant consideration in design. The method of analysis used to obtain the numerical data reported herein is reviewed only briefly, the emphasis of the paper being on the interpretation of the results.  相似文献   

12.
A new critical excitation method is developed for soil–structure interaction systems. In contrast to previous studies considering amplitude nonstationarity only, no special constraint of input motions is needed on nonstationarity. The input energy to the soil–structure interaction system during an earthquake is introduced as a new measure of criticality. It is demonstrated that the input energy expression can be of a compact form via the frequency integration of the product between the input component (Fourier amplitude spectrum) and the structural model component (so-called energy transfer function). With the help of this compact form, it is shown that the formulation of earthquake input energy in the frequency domain is essential for solving the critical excitation problem and deriving a bound on the earthquake input energy for a class of ground motions. The extension of the concept to MDOF systems is also presented.  相似文献   

13.
The concept of equivalent linearization, in which the actual nonlinear structure is replaced by an equivalent linear single-degree-of-freedom (SDOF) system, is extended for soil-structure systems in order to consider the simultaneous effects of soil-structure interaction (SSI) and inelastic behavior of the structure on equivalent linear parameters (ELP). This is carried out by searching over a two-dimensional equivalent period–equivalent damping space for the best pair, which can predict the earthquake response of the inelastic soil-structure system with sufficient accuracy. The super-structure is modeled as an elasto-plastic SDOF system whereas the soil beneath the structure is considered as a homogeneous half-space and is replaced by a discrete model. An extensive parametric study is carried out for a wide range of soil-structure systems subjected to a suite of 59 ground motions. The effect of SSI on ELP is studied through introducing a set of non-dimensional key parameters, which define the soil-structure system. It is shown that ELP of soil-structure systems result from a trade-off between SSI effect and nonlinear behavior of the structure. The contribution of each of these two factors depends on the characteristics of the soil-structure system which, in turn, are defined by the introduced non-dimensional key parameters. Moreover, the reliability of the predicted response of soil-structure systems and its sensitivity to deviation from optimal ELP is studied in detail, which sheds light on the consequences of using improper pairs of ELP for interacting systems in the framework of performance-based design of structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
对于放置有设备的功能性隔震结构,目前的设计方法忽略了结构与设备的动力相互作用,仅满足隔震结构的抗震要求,并不考虑设备的抗震性能.因此,本文给出一种隔震结构-设备组合体系的优化设计方法,考虑设备与隔震结构的相互作用和非比例阻尼影响,以设备和隔震结构同时满足抗震要求为目标函数,采用多种群遗传算法,对隔震结构-设备组合体系进...  相似文献   

15.
The surface runoff system is often represented by a single-input single-output model in which the rainfall excess x(t) is defined as the input function and the direct surface runoff y(t) is the output. The problem considered is the optimal identification of the system from given records of several independent storm events each consisting of an input and the corresponding output function. The system is represented by a discrete-time second-order Volterra series. The method is a point by point identification which can be extended to Volterra systems of order higher than a second order. The identified system is required to be conservative as in a previous work of Diskin & Boneh [1973]. In this study the identified system is further required to be copositive. Therefore the notion of copositivity is introduced and an example of a watershed system in Southern Illinois is identified with variable copositivity threshold constraints.  相似文献   

16.
The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single‐degree‐of‐freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non‐conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non‐conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
An efficient computational technique is presented for the dynamic analysis of large linear structural systems with local non-linearities. The earthquake response evaluation for many practical structures belongs to this class of problems. The technique provides a rational approach to the earthquake-resistant design of structure-foundation systems with predetermined non-linearities occurring along the structure-foundation interface. Various possibilities for base isolation systems are naturally fitted within the proposed framework. In particular, we address uplifting of the structure as a natural base isolation concept. We use the dynamic substructuring technique and an efficient numerical algorithm which accommodates non-proportional damping as a consistent way to reduce significantly the computational effort, which is in sharp contrast to the vast majority of ad-hoc simplified models used for the same purpose. A numerical example which demonstrates the vibration isolation effect when the uplifting of the concrete gravity dam occurs is also presented.  相似文献   

18.
The frequency-independent foundation impedances, commonly used in soil-structure dynamic interaction problems, are developed for a circular footing resting on a homogeneous halfspace. As they ignore the structure attached to the foundation, the error introduced in the structural response may be 50 per cent or more in the neighbourhood of the fundamental frequency of the soil-structure system. The present study proposes a new method developed for most dynamic soil-structure interaction problems. The key idea is to retain for the frequency-independent impedances values computed for the fundamental frequency of the soil-structure system; thus these values include the dynamic characteristics of the whole soil-structure system and lead to a satisfactory approximation of the exact solution over a wide frequency range. The method is developed here for the horizontal and rocking modes of a structure with a circular base resting on a homogeneous halfspace. Numerical applications are given for a simple linear oscillator in order to make possible a thorough parametric study. The response of some idealized building-foundation systems to harmonic excitation or to a seismic input is next examined in order to illustrate the efficiency of the proposed model.  相似文献   

19.
This paper addresses the problem of generating unmeasured kinetic data—and/or providing improvements in existing data—for the enhancement of performance characteristics of earthquake engineering test systems, such as shaking tables, reaction walls and other custom‐made test rigs. The approach relies upon the use of composite filters (CF), a method of data fusion that was originally conceived via transfer function formulation. The current work generalises the CF concept and extends its formulation into the state‐space domain, thereby providing a wider basis for application to test systems and their controllers, including those of a multivariable (coupled, multi‐axis) nature. Comparative simulation studies of shaking table control are presented that demonstrate the design techniques for state‐space CF and also their effectiveness for signal synthesis, noise suppression and performance improvement. Specific examples include the use of CF for displacement demand signal generation, velocity feedback generation and acceleration control. In each case, the essential principles behind CF—output signals with zero bias and zero drift—are consistently upheld. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Short-term water system operation can be realized using Model Predictive Control (MPC). MPC is a method for operational management of complex dynamic systems. Applied to open water systems, MPC provides integrated, optimal, and proactive management, when forecasts are available. Notwithstanding these properties, if forecast uncertainty is not properly taken into account, the system performance can critically deteriorate.Ensemble forecast is a way to represent short-term forecast uncertainty. An ensemble forecast is a set of possible future trajectories of a meteorological or hydrological system. The growing ensemble forecasts’ availability and accuracy raises the question on how to use them for operational management.The theoretical innovation presented here is the use of ensemble forecasts for optimal operation. Specifically, we introduce a tree based approach. We called the new method Tree-Based Model Predictive Control (TB-MPC). In TB-MPC, a tree is used to set up a Multistage Stochastic Programming, which finds a different optimal strategy for each branch and enhances the adaptivity to forecast uncertainty. Adaptivity reduces the sensitivity to wrong forecasts and improves the operational performance.TB-MPC is applied to the operational management of Salto Grande reservoir, located at the border between Argentina and Uruguay, and compared to other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号