首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 911 毫秒
1.
Trophic resources are an important control governing carbonate production. Though this importance has long been recognized, no calibration exists to quantitatively compare biogenic assemblages within trophic resource fields. This study presents a field calibration of carbonate producers in a range of settings against high‐resolution in situ measurements of nutrients, temperature and salinity. With its latitudinal extent from 30° to 23° N, the Gulf of California, Mexico, spans the warm‐temperate realm and encompasses nutrient regimes from oligo‐mesotrophic in the south to eutrophic in the north. Accordingly, from south to north carbonates are characterized by: (i) coral‐dominated shallow carbonate factories (5–20 m water depth) with average sea‐surface temperatures of 25 °C (min. 18 °C, max. 31 °C), average salinities of 35·06‰ and average chlorophyll a levels, which are a proxy for nutrients, of 0·25 mg Chl a m?3 (max. 0·48, min. 0·1). (ii) Red algal‐dominated subtidal to inner‐shelf carbonate formation (10–25 m) in the central Gulf of California exhibiting average temperatures of 23 °C (min. 18 °C, max. 30 °C), average salinities of 35·25‰, and average Chl a levels of 0·71 Chl a m?3 (max. 5·62, min. 0). (iii) Molluskan bryozoan‐rich inner to outer shelf factories in the northern Gulf of California (20–50 m) with average sea surface temperatures of only 20 °C (min. 13 °C, max 29 °C), average salinities of 35·01‰, and average contents of 2·2 mg Chl a m?3 (max. 8·38, min. 0). By calibrating sedimentological data with in situ measured oceanographic information in different environments, the response of carbonate producers to environmental parameters was established and extrapolated to carbonates on a global scale. The results demonstrate the importance of recognizing and quantifying trophic resources as a dominant control determining the biogenic composition and facies character of both modern and fossil carbonates.  相似文献   

2.
Creep and saltation are the primary modes of surface transport involved in the fluid‐like movement of aeolian sands. Although numerous studies have focused on saltation, few studies have focused on creep, primarily because of the experimental difficulty and the limited amount of theoretical information available on this process. Grain size and its distribution characteristics are key controls on the modes of sand movement and their transport masses. Based on a series of wind tunnel experiments, this paper presents new data regarding the saltation flux, obtained using a flat sampler, and on the creeping mass, obtained using a specifically designed bed trap, associated with four friction velocities (0·41, 0·47, 0·55 and 0·61 m sec?1). These data yielded information regarding creeping and saltating sand grains and their particle size characteristics at various heights, which led to the following conclusions: (i) the creeping masses increased as a power function (q = ?1·02 + 14·19u*3) of friction wind velocities, with a correlation (R2) of 0·95; (ii) the flux of aeolian sand flow decreases exponentially with increasing height (q = a exp(–z/b)) and increases as a power function (q = ?26·30 + 428·40 u*3) of the friction wind velocity; (iii) the particle size of creeping sand grains is ca 1·15 times of the mean diameter of salting sand grains at a height of 0 to 2 cm, which is 1·14 times of the mean diameter of sand grains in a bed; and (iv) the mean diameter of saltating sand grains decreases rapidly with increasing height whereas, while at a given height, the mean diameter of saltating sand grains is positively correlated with the friction wind velocity. Although these results require additional experimental validation, they provide new information for modelling of aeolian sand transport processes.  相似文献   

3.
Discordant zebra dolomite bodies occur locally in the Middle Cambrian Cathedral and Eldon Formations of the Main Ranges of the Canadian Rocky Mountains Fold and Thrust Belt. They are characterized by alternating dark grey (a) and white (b) bands, forming an ‘abba’ diagenetic cyclicity. These bands developed parallel to both bedding and cleavage. Dark grey (a) bands consist of fine (< 300 μm) non-planar crystalline impure dolomite. The white (b) bands are composed of coarse (up to several millimetres) milky-white pure saddle dolomites (b1) which are often covered by pore-lining zoned dolomite (b2). The b phases often possess a saddle-shaped morphology. In contrast to the replacement origin of the a dolomite, the zoned b2 dolomite rims are interpreted as a cement formed in open cavities. The b1 dolomite is interpreted as the result of recrystallization with diagenetic leaching of non-carbonate components. All the zebra dolomites studied are (nearly) stoichiometric and are characterized by enriched Na and depleted Sr concentrations. Fe and Mn concentrations in these dolomites differ depending on the sample locality. Fluid inclusion data indicate that the dolomites formed from relatively hot (TH = 130–200 °C), saline (20–23 wt% CaCl2 eq.) fluids. A diagenetic high temperature origin is also supported by depleted δ18O values (−20 to −14‰ VPDB). A contribution of 87Sr-enriched fluids is reflected in the 87Sr/86Sr values (0·7091–0·7123). Zebra dolomite development is explained by focused fluid flow, which exploited areas of structural weaknesses (e.g. basin-platform, rim areas, faults, etc.). Expulsion of hot basinal brines in a tectonically active regime generated overpressures, which explains the development of secondary porosity during zebra dolomitization as well as the intra-zebra fracturing at decimetre to micrometre scale.  相似文献   

4.
The structure of deuterated portlandite, Ca(OD)2, has been investigated using time-of-flight neutron diffraction at pressures up to ∼4.5 GPa and temperatures up to ∼823 K. Rietveld analysis of the data reveals that with increasing pressure, unit-cell parameter c decreases at a rate about 4.5 times larger than that for a, which is largely due to rapid contraction of the interlayer spacing in this pressure range. Fitting of the determined cell volumes to the third-order Birch–Murnaghan equation of state yields a bulk modulus (K 0) of 32.2 ± 1.0 GPa and its first derivative (K 0′) of 4.4 ± 0.6. Moreover, on compression, hydrogen-mediated interatomic interactions within the interlayer become strengthened, as reflected by decreases in interlayer D···O and D···D distances with increasing pressure. Correspondingly, D–D, the distance between the three equivalent sites over which D is disordered, increases, suggesting a pressure-induced hydrogen disorder. This behavior is similar to that reported in brucite at elevated pressure. On heating at ∼2.1 GPa, cell parameter c increases more rapidly than a, as expected. However, because of the pressure effect, the thermal expansion coefficients, particularly along c, are much smaller than those at ambient pressure. With increasing temperature, the three partially occupied D sites become further apart, and the D-mediated interactions, mainly the interlayer D···D repulsion, become weakened.  相似文献   

5.
The space group of an orthopyroxene (En86) from a deep crustal lunar rock (sample 76535) that was previously reported as having space group P21 ca has been re-examined on an automated X-ray diffractometer. In addition to diffractions violating the b-glide of the conventional space group, Pbca (0kl,k-odd) reported in the earlier study, diffractions violating the a-glide of Pbca are also present. Careful examination of both the a-glide- and b-glide-violations shows them to be sharp, with no evidence of diffuse streaks parallel to a *, and with consistent intensities at several rotations about ψ. Diffractions violating the b-glide are in registry with the host, however, those violating the a-glide appear to be out of registry and result from a cell with a slightly longer a of about 18.4 Å, consistent with previous electron diffraction studies. The most reasonable explanation for the observed space group violations is that both the a- and b-glide violations result from ordering of Ca into (100) Guinier-Preston (G-P) zones that possess orthopyroxene topology, but have space group P21/c and a cell of a=18.4 Å, b=8.83 Å, c=5.18 Å, and β=90.0°; whereas the Cadepleted host has space group Pbca and a cell of a= 18.230(6) Å, b = 8.828(2) Å, and c=5.1946(9) Å. In addition to the G-P zones which may compose 12% or more of the sample, the crystal contains (100) lamellae of pigeonite, and other samples from the same rock contain lamellae of augite.  相似文献   

6.
 Forty-three untreated and actively and passively (wetland) treated coal mine drainage sediments and five yellow-red pigments were characterized using X-ray fluorescence, fusion-inductively coupled plasma atomic emission spectroscopy, X-ray diffraction, and tristimulus colorimeter. Primary crystalline iron-bearing phases were goethite and lepidocrocite, and iron phases converted to hematite upon heating. Quartz was nearly ubiquitous except for synthetic pigments. Gypsum, bassinite, calcite, and ettringite were found in active treatment sediments. Iron concentrations from highest to lowest were synthetic pigment>wetland sediment>natural pigment>active treatment (untreated sediments varied more widely), and manganese was highest in actively treated sediments. Loss on ignition was highest for passively treated sediments. No clear trends were observed between quantified color parameters (L*, a*, b*, and Redness Index) and chemical compositions. Because sediments from passive treatment are similar in chemistry, mineralogy, and color to natural pigments, the mine drainage sediments may be an untapped resource for pigment. Received: 29 December 1997 · Accepted: 11 May 1998  相似文献   

7.
Morphostructural zoning (MSZ) scheme of the Himalayan arc region as obtained from a joint study of topographic, geological and tectonic maps as well as satellite imagery is analysed. Three types of morphostructures have been determined: territorial units (blocks of different ranks), linear zones limiting these blocks (lineaments) and intersections of the lineaments (knots). Comparison of MSZ scheme with the know seismicity indicates epicenters of strong earthquakes (M≥6·5) clustered around some of these knots. Pattern recognition method is used to determine seismically potential areas for the occurrence of recognition method is used to determine seismically potential, for the occurrence of strong earthquakes of magnitude ≥M 0. We have carried out two such studies for the Himalayan arc region, one forM 0=6·5 and the other forM 0=7·0. Out of a total number of 97 knots, 48 knots are found to be seismically potential for the occurrence of earthquake ofM≥6·5. The results of the study forM 0=6·5 were presented in the symposium on “Earthquake Prediction” held in Strasbourg, France, March 1991 (Gorshkovet al 1991). The epicenter of Uttarkashi earthquake of magnitude,M b=6·6 that occurred in the late hours of 19th October 1991 (UTC) lies in the vicinity of one such knot. The second study carried out subsequently shows that only 36, knots are potential for the occurrence of earthquakes ofM≥7·0, which include the knot, associated with theUttarkashi earthquake.  相似文献   

8.
Peng  Qinge  Liu  Xingnian  Huang  Er  Yang  Kejun 《Natural Hazards》2019,98(2):751-763

Due to the steep slope of mountainous watersheds and large changes in vegetation coverage degree, flood response processes after rainstorms are complicated. The flow concentration time of the slope is a key parameter for the simulation of flood processes. The most widely used flow concentration time formula currently in the distributed hydrological model is T?=?L0.6n0.6i?0.4S?0.3, which is derived from the kinematic wave theory (Melesse and Graham in J Am Water Resour As 40(4):863–879, 2004; Lee in Hydrol Sci 53(2):323–337, 2008). The flow confluence time T is characterized by the constant exponent of the slope length L, roughness n, effective rainfall intensity i and slope S, and the influence of vegetation on the flow concentration time is implied by the roughness. In this study, a series of heavy rainfall slope surface confluence tests under different slopes and vegetation coverage were carried out, a vegetation coverage factor, C, which was introduced, a statistical analysis method was used, and the vegetation coverage index was fitted. The results showed that the types of vegetation have a certain influence on the flow concentration time of slope, and the flow confluence time under turf vegetation was larger than the flow confluence time under shrubs vegetation; especially in the slope of the larger slope, the relative impact is more significant; at the same time, the influence of vegetation coverage on the flow concentration time of slope was more significant; no matter the condition of turf or shrub, the slope confluence time increased obviously with the increase in vegetation coverage. The index of vegetation coverage factor C varied with the slope and rain intensity. In general, the index of vegetation coverage factor C increased with the decrease in slope and decreased with the increase in rain intensity. In regard to the turf vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change. In regard to the shrubs vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change.

  相似文献   

9.
Boundary Bay tidal flats on the inactive southern flank of the Fraser Delta have surface sediments consisting almost entirely of very fine to fine, well to very well sorted sands which show a gradual fining-shorewards trend. Five floral/sedimentological zones form distinct biofacies. These are, from the shoreline seaward, the saltmarsh, algal mat, upper sand wave, eelgrass and lower sand wave zones. The lower limit of the saltmarsh lies at a constant level above which the maximum duration of continuous exposure rises abruptly from ~ 12 to 40 days. Similarly, at the lower limit of the algal mat zone the maximum duration of continuous exposure jumps from 1 to ~ 2 days, and at the upper limit of the eelgrass zone from ~ 0·5 to ~ 0·8 days. These correlations between exposure and zonation are suggested to be causal. In the algal mat and eelgrass zones microtopography of biogenic origin, only a few centimetres high, creates lateral heterogeneity within the zonal biofacies. In the upper sand wave zone, very low amplitude (a~ 0·1 m) symmetrical sand waves (λ~ 30 m) of probable storm-wave origin have a similar effect. In the lower sand wave zone, sand waves (a~ 0·5 m, λ~ 60 m) are formed by tidal currents or wave action and physical sedimentary structures dominate over biogenic ones. The densities of the following macrofaunal organisms which produce distinctive biogenic sedimentary structures were determined on two surveyed transects: Callianassa californiensis and Upogebia pugettensis, both thalassinidean shrimps; three polychaete worms, Abarenicola sp., Spio sp. and Clymenella sp.; the bivalve Mya arenaria and the gastropods Batillaria attramentaria and Nassarius mendicus. Callianassa excavate unlined temporary feeding burrows, whereas Upogebia build mud-lined permanent dwelling burrows. Upogebia are restricted to below mean sea-level where continuous exposure is < 0·5 days, whereas Callianassa extend up to a level, just below mean higher high water, where maximum continuous exposure rises abruptly from 4 to 9 days. This difference in range is probably due to the latter's greater anoxia tolerance—a necessary adaptation for life in an unlined feeding burrow.  相似文献   

10.
The high-pressure elastic behaviour of a synthetic zeolite mordenite, Na6Al6.02Si42.02O96·19H2O [a=18.131(2), b=20.507(2), c=7.5221(5) Å, space group Cmc21], has been investigated by means of in situ synchrotron X-ray powder diffraction up to 5.68 GPa. No phase transition has been observed within the pressure range investigated. Axial and volume bulk moduli have been calculated using a truncated second-order Birch–Murnaghan equation-of-state (II-BM-EoS). The refined elastic parameters are: V 0=2801(11) Å3, K T0= 41(2) GPa for the unit-cell volume; a 0=18.138(32) Å, K T0(a)=70(8) GPa for the a-axis; b 0=20.517(35) Å, K T0(b)=29(2) GPa for the b-axis and c 0=7.531(5) Å, K T0(c)=38(1) GPa for the c-axis [K T0(a): K T0(b): K T0(c)=2.41:1.00:1.31]. Axial and volume Eulerian finite strain versus “normalized stress” plots (fe–Fe plot) show an almost linear trend and the weighted linear regression through the data points yields the following intercept values: Fe(0)=39(4) GPa for V; Fe a (0)=65(18) GPa for a; Fe b (0)=28(3) GPa for b; Fe c (0)=38(2) GPa for c. The magnitudes of the principal Lagrangian unit-strain coefficients, between 0.47 GPa (the lowest HP-data point) and each measured P>0.47 GPa, were calculated. The unit-strain ellipsoid is oriented with ε1 || b, ε2 || c, ε3 || a and |ε1|> |ε2|> |ε3|. Between 0.47 and 5.68 GPa the relationship between the unit-strain coefficient is ε1: ε2: ε3=2.16:1.81:1.00. The reasons of the elastic anisotropy are discussed.An erratum to this article can be found at  相似文献   

11.
High-pressure single crystal X-ray diffraction experiments of phase anhydrous B and superhydrous B have been carried out to 7.3 and 7.7?GPa, respectively, at room temperature. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields values of V 0?=?838.86?±?0.04?Å3, KT,0?=?151.5?±?0.9?GPa and K′?=?5.5?±?0.3 for Anhy-B and V 0?=?624.71?± 0.03?Å3, KT,0?=?142.6?±?0.8?GPa and K′?=?5.8?±?0.2 for Shy-B. A similar analysis of the axial compressibilities in Anhy-B reveals that the c-axis is most compressible (Kc?=?137?±?3?GPa), the b-axis is least compressible (Kb?=?175?±?4?GPa), and the a-axis is intermediate (Ka?=?148?±?1?GPa). In Shy-B, the a-axis is most compressible (Ka?=?135?±?1?GPa), followed by the b- and c-axes which have similar compressibilities (Kb?=?146?±?3?GPa; Kc?=?148?±?3?GPa). The fact that the b-axis of Shy-B is approximately 16% more compressible than Anhy-B is primarily due to differences in the O-T layer in which the H atoms are located and the linkages with the adjacent O layers. The rigid edge-sharing chains of MgO6 and SiO6 octahedra in the O layer control compressibility along the a- and c-axes in both structures. The net result is a reduction in the overall anisotropic compression from ~22% in Anhy-B to ~9% in Shy-B.  相似文献   

12.
The thermo-elastic behavior of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH)] has been investigated up to 1,200 K (at 0.0001 GPa) and 10 GPa (at 298 K) by means of in situ synchrotron powder diffraction. No phase transition has been observed within the temperature and pressure range investigated. PV data fitted with a third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 458.8(1)Å3, K T0 = 111(3) GPa, and K′ = 7.6(7). The confidence ellipse from the variance–covariance matrix of K T0 and K′ from the least-square procedure is strongly elongated with negative slope. The evolution of the “Eulerian finite strain” vs “normalized stress” yields Fe(0) = 114(1) GPa as intercept values, and the slope of the regression line gives K′ = 7.0(4). The evolution of the lattice parameters with pressure is slightly anisotropic. The elastic parameters calculated with a linearized BM-EoS are: a 0 = 8.8877(7) Å, K T0(a) = 117(2) GPa, and K′(a) = 3.7(4) for the a-axis; b 0 = 5.6271(7) Å, K T0(b) = 126(3) GPa, and K′(b) = 12(1) for the b-axis; and c 0 = 10.1527(7) Å, K T0(c) = 90(1) GPa, and K’(c) = 8.1(4) for the c-axis [K T0(a):K T0(b):K T0(c) = 1.30:1.40:1]. The β angle decreases with pressure, βP(°) = βP0 −0.0286(9)P +0.00134(9)P 2 (P in GPa). The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α0 + α1 T −1/2. The refined parameters for epidote are: α0 = 5.1(2) × 10−5 K−1 and α1 = −5.1(6) × 10−4 K1/2 for the unit-cell volume, α0(a) = 1.21(7) × 10−5 K−1 and α1(a) = −1.2(2) × 10−4 K1/2 for the a-axis, α0(b) = 1.88(7) × 10−5 K−1 and α1(b) = −1.7(2) × 10−4 K1/2 for the b-axis, and α0(c) = 2.14(9) × 10−5 K−1 and α1(c) = −2.0(2) × 10−4 K1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α0(a): α0(b): α0(c) = 1 : 1.55 : 1.77. The β angle increases continuously with T, with βT(°) = βT0 + 2.5(1) × 10−4 T + 1.3(7) × 10−8 T 2. A comparison between the thermo-elastic parameters of epidote and clinozoisite is carried out.  相似文献   

13.
The pyroclastic deposits of the Minoan eruption (ca 3600 yr bp ) in Santorini contain abundant xenoliths. Most of these deposits are calcareous blocks of laminated‐botryoidal, stromatolite‐like buildups that formed in the shallow waters of the flooded pre‐Minoan caldera; they consist of (i) light laminae, of fibrous aragonite arranged perpendicular to layering, and (ii) dark laminae, with calcified filaments of probable biological origin. These microstructures are absent in the light laminae, suggesting a predominant inorganic precipitation of aragonite on substrates probably colonized by microbes. Internal cavities contain loose skeletal grains (molluscs, ostracods, foraminifera and diatoms) that comprise taxa typical of shallow marine and/or lagoon environments. Most of these forms are typical of warm water environments, although no typical taxa from hydrothermal vents have been observed. Past gasohydrothermal venting is recorded by the occurrence of barite, pyrolusite and pyrite traces. The most striking features of the stable isotopic data set are: (i) an overall wide range in δ13CPDB (0·16 to 12·97‰) with a narrower variation for δ18OPDB (?0·23 to 4·33‰); and (ii) a relatively uniform isotopic composition for the fibrous aragonite (δ13C = 12·40 ± 0·43‰ and δ18O = 2·42 ± 0·77‰, = 21). The δ13C and δ18O values from molluscs and ostracods display a covariant trend, which reflects a mixing between sea water and a fluid influenced by volcano‐hydrothermal activity. Accordingly, 87Sr/86Sr from the studied carbonates (0·708758 to 0·709011 in fibrous aragonite and 0·708920 to 0·708991 in molluscs) suggests that the aragonite buildups developed in sea water under the influence of a hydrothermal/volcanic source. Significant differences in trace elements have been detected between the fibrous aragonite and modern marine aragonite cements. The caldera water from which the fibrous aragonite crusts formed received an input from a volcano‐hydrothermal system, probably producing diffuse venting of volcanogenic CO2 gas and of a fluid enriched in Ca, Mn and Ba, and depleted in Mg and probably in Sr.  相似文献   

14.
《Sedimentology》2018,65(6):1859-1874
Ripples are prevalent in aeolian landscapes. Many researchers have focused on the shape and formation of sand ripples, but few have studied the differences in the particle size of sand on crests and in troughs along bed, especially the variations caused by changes in friction velocity and the wind‐blowing duration. A particle size of 158 μm (d ) was used to create aeolian ripples in a wind tunnel under four friction velocities (u *) with different wind duration times (t ). Samples were collected from the surfaces of ripple crests and troughs, respectively, at seven sites, and particle sizes were measured using a Malvern Mastersizer 2000. The main results were: (i) The particle size distributions of sand in troughs are unimodal with slight variations of particle size parameters, including mean particle size, standard deviation, skewness and kurtosis, etc., under different conditions, while these particle size parameters of sand on crests change with friction velocity and deflation time. Moreover, some of the particle distribution curves for the sand on crests do not follow typical unimodal curves. (ii) With increasing friction velocity or deflation duration, the sand on the crests shows a coarsening process relative to those on the bed surface. The particle size of sand on crests at a 1 m bed increases linearly with friction velocity (=  344·27 + 34·54 u *) at a given wind‐blowing duration. The particle sizes of sand on crests at 1 m, 2 m and 4 m beds increase with a power‐law relationship (= a + t b, where a and b are fitting parameters) with deflation time at a given friction velocity. (iii) The probability cumulative curves of sand showed a three‐section pattern in troughs and on most of the crests but a four‐section pattern at crest locations due to increased influence by friction velocity and deflation time. The proportions of the sediment moved by suspension, saltation and creep in the three‐section pattern were within the ranges of 0·2% to 2·0%, 97·0% to 98·9%, and 0·8% to 3·0%, respectively. For the four‐section pattern, suspension accounted for 0·3% and 3·0%, and the proportion of creep increased with friction velocity and deflation time, while saltation decreased accordingly. Although these results require additional validation, they help to advance current understanding of the grain‐size characteristics of aeolian ripples.  相似文献   

15.
Zebra dolomites, characterized by a repetition of dark grey (a) and light (b) coloured dolomite sheets building up abbabba-sequences, occur in Dinantian strata from deep boreholes (> 2000 m) south of the Brabant-Wales Massif in Belgium. These zebra dolomite sequences are several tens of metres thick. The dark grey dolomite sheets (a) consist of non-planar crystals, 80–150 μm in diameter. These crystals display a mottled red–orange luminescence and are interpreted to be replacive in origin. The white dolomite sheets (b) consist of coarse crystalline nonplanar b1 dolomite, which evolves outwards into transparent saddle shaped b2 dolomite. The b1 dolomites possess a mottled red–orange luminescence similar to the a dolomites, while the saddle shaped b2 rims display red to dark brown luminescent-zones. The b1 dolomites are possibly partly replacive and partly cavity filling. Their b2 rims display criteria typical for a cement origin. Locally, cavities exist between two succeeding white dolomite sheets. These cavities make up ≈5% of the zebra rocks and are locally filled by saddle shaped ankerite and/or xenomorphic ferroan calcite. Geochemical and fluid inclusion data (Th ≈ 120 °C) indicate a burial diagenetic origin for these zebra dolomites. The a and b1 dolomites are characterized by similar geochemical compositions and fluid inclusion data pointing toward a related origin. To explain the development of the zebra textures, suprahydrostatic pressures in conjunction with late Variscan tectonic compression are invoked. A model involving dolomitizing fluids expelled during the Variscan orogeny is proposed. An overpressured system is also invoked to explain the important porosity development, the creation of centimetre-scale subvertical displacements of the zebra pattern and the microfractures affecting the b1b2 dolomite crystals.  相似文献   

16.
This paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from ?9·02 to ?5·83‰ δ13CPDB and ?7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from ?8·93 to ?3·96‰ δ13CPDB and ?5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.  相似文献   

17.
Kern(1982)和 Kern 与 Richter(1981)介绍了他们通过高温高压实验测定的、多种岩石在不同温度和压力条件下模拟地震 P 波和 S 波的波速 Vp 和 Vs,这些资料对于探索地壳内的岩石矿物组成和各种物理性质是十分宝贵的。我们知道,Vp 和 Vs 既依赖于温度,也依赖于压力。  相似文献   

18.
A new superstructure was found in bafertisite [(Ba0.98Na0.02)1.00(Fe1.71Mn0.26Mg0.01)1.98 TiO[(Si1.82Ti0.04Al0.03Cr0.01)1.90O7](OH1.40F0.53Cl0.03)1.96] from Donghai County, Jiangsu Province, China. The occurrence of the superstructure reflections were observed by single crystal diffraction using a SMAR APEX CCD. The a*, b*and c* axis directions revealed extra weak reflection spots of the superstructure. The apparent 2a, 2b and 2c superstructure is monoclinic with unit cell a=10.6502(15)?, b=13.7233(19)?, c=21.6897(3)?, α=90o, β=94.698(3)o, γ=90o,space group Cm,Z=16. If c* extra weak reflections are ignored, the secondary supercell gave a cell a=10.6548(15)?, b=13.7284(19)?, c=11.6900(17)?, α=90o, β=112.322(28)o, γ=90o,space group Cm,Z=8. The basic subcell was obtained by ignoring all extra weak reflection spots and gave: a=5.3249(17)?, b=6.8669(22)?, c=10.8709(36)?, α=90o, β=94.740(62)o, γ=90o,space P21/m,Z=2. The superstructure has been refined to R = 0.063 for 7805 [R(int) = 0.0266] unique reflections I>2δ(I). The structure consists of an octahedra (O) sheet sandwiched between two heteropolyhedral (H) sheets. These sheets consist of Ti–octahedra and twin tetrahedral disilicate groups [Si2O7]. The O sheet comprises (Fe,Mg)O4 octahedra. The large Ba cation is located in the interlayer area. The refined structure shows Fe, Mg are partly ordered. The shifting of the TiO6 octahedron and SiO4 tetrahedron sites in the sheet may be a consequence of the superstructure.  相似文献   

19.
Pseudohexagonal aragonite crystals are common components in some hot-spring travertines at Chemurkeu on the western shore of Lake Bogoria, Kenya. Beds, lenses and pods of aragonite crystals are intercalated with beds of white non-crystallographic calcite dendrites. The pseudohexagonal aragonite crystals, which are up to 4 cm long and 4 mm wide, are formed of nested skeletal crystals. Each skeletal crystal is formed of cyclical twinned crystals that are constructed of stacked subcrystals. The latter are inclined at a consistent angle of 40° to the long axis of the pseudohexagonal aragonite crystal. Intense competition for space during growth modified the crystal morphology with the result that many of the pseudohexagonal crystals are distorted. Intercrystalline and intracrystalline pores are filled or partly filled by epitaxial aragonite overgrowths and/or reticulate microbial coatings that have a high concentration of Si and Mg. In places, this extracellular mucus induced etching of the underlying aragonite crystal. Today the hot (T>95 °C) Na-HCO3-Cl spring waters at Chemurkeu have a salinity of 5–6 g L?1 TDS, a pH of 8·1–9·1, Ca2+ concentrations of <2 mg L?1 and Mg2+ concentrations of <0·7 mg L?1, The springs of the Lake Bogoria Geothermal Field are fed by a shallow aquifer (T~100 °C) and a deeper aquifer (T~170 °C). Springs at Chemurkeu derive from meteoric groundwater, lake water and condensed steam, and are fed mainly from the shallow thermal aquifer. Much of the aragonite may have formed when the spring waters contained more dissolved Ca2+ than today, possibly under more humid conditions during the Holocene.  相似文献   

20.
The patterns of deformed early lineations (L1) over later folds (F2) can be classified into several morphological types depending on the nature of variation of L1 F2 over the folds. The field relations indicate that the folds under consideration are neither shear folds nor parallel folds modified by flattening. The lineation patterns are therefore interpreted in terms of an empirical model of simultaneous buckling and flattening in which it is assumed that (i) the central surface of the folded layer remains a sine curve in transverse profile, (ii) the ratio of rates of buckle shortening to homogeneous strain is proportional to sin 2a, with a as the dip angle and (iii) the progressive deformation is coaxial with the Z-axis of bulk strain parallel to the planar segments of the early folds. The model gives an insight into the relative importance of different physical factors which control the development of dissimilar lineation patterns. Not all lineation patterns are explicable by this simplified model. Thus complex patterns with variable L1 F2 along the fold axis may develop by a progressive rotation of the geometrically defined fold hinge through successive material lines. The theoretical results have been applied to interpret the lineation patterns in Central Rajasthan, India. It is concluded that L1 was initially very close to the E-ESE trending subhorizontal Z-axis of bulk deformation during F2-folding and that the X-axis was subhorizontal or gently plunging with a N-NNE trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号