首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
地震作用下黄土边坡的动力响应特征与变形失稳机制是具有重要理论与实践意义的课题,但从动力响应频谱特性方面开展的研究还相对较少.以大型振动台模型试验获得的黄土边坡地震动峰值加速度数据为基础,通过分析其变化规律,着重从频谱特性的角度分析,讨论黄土边坡的动力失稳机制.进一步通过对坡面不同高程测点、边坡内部垂直方向以及水平方向上测点的加速度时程进行绝对加速度反应谱分析,从频谱变化角度提出黄土边坡的动力失稳机制.研究表明,黄土边坡在地震动作用下的响应过程可以分为三个阶段:弹性阶段、塑性阶段与破坏阶段;黄土边坡进入破坏阶段时均会伴随反应谱峰值的增幅或者主周期的变化,在弹性阶段反应谱加速度峰值增幅与输入地震动幅值增幅一致,进入塑性阶段后反应谱峰值增幅比输入地震动幅值增幅小;研究提出将反应谱首峰的凸显情况作为坡体破坏程度的判断依据之一.  相似文献   

2.
混合结构体系高层建筑模拟地震振动台试验研究   总被引:22,自引:2,他引:20  
随着现代建筑高度的不断增加,混合结构体系在超高层建筑中逐步广泛应用,因此对该结构体系在地震作用下的破坏机理和抗震性能展开深入的研究是一项有意义的工作。本文对一混合结构体系复杂超高层建筑进行1/35的模型模拟地震振动台试验,分析模型结构的动力特性和不同烈度地震作用下加速度、位移和应变反应,然后根据相似关系推算出原型结构的动力特性和反应,研究其在各水准地震作用下的破坏机理和破坏形式,最后对原型结构设计提出若干建议。  相似文献   

3.
Many surviving ancient monuments are freestanding stone masonry structures, which appear to be vulnerable to horizontal dynamic loads such as earthquakes. However, such structures have stood for thousands of years despite numerous historic earthquakes. This study proposes a scaled-down dynamic centrifuge modelling test to study how these masonry structures resist seismic loading. The test is proposed for seismic risk assessments to evaluate risk of damage from a future seismic event. The seismic behaviour of a 3-storey, freestanding stone block structure has been modelled and tested within a centrifuge. Models were made at 3 different scales and dynamic tests were conducted using different centrifugal acceleration fields so that the behaviours could be transformed to an equivalent full-scale prototype and compared. Data from 2 earthquakes and a sweeping signal were used to simulate the effects of earthquake ground motion within the centrifuge. The acceleration and frequency responses at each storey height of the model were recorded in different centrifugal acceleration fields. Similar behaviours appeared when the results of the small-scale models were transformed to a full-size prototype scale. This confirms that the seismic behaviour of stone masonry structures can be predicted using scaled-down models.  相似文献   

4.
The evaluation of the dynamic behaviour of rocking elements is directly correlated to the energy dissipated because of the impacts at the base interface, which can be represented by means of a coefficient of restitution. This schematization is commonly accepted as representative of the out‐of‐plane response of stone masonry walls. An experimental campaign (in a lab environment) aiming at assessing the value of this coefficient for a sacco granite masonry wall is presented in this work. The rocking motion at a predefined bed joint level was induced in the tested specimens in order to validate a novel test setup designed to assess the coefficient of restitution value by means of a realistic reproduction of the rocking behaviour of a single element, under the hypothesis of an infinitely stiff system above the bed joint level. As the main objective of the work was to assess the rocking behaviour of a masonry wall that looses energy at the impacts at a certain joint level, the flexural behaviour was not desirable and had to be avoided. For this purpose, a test setup based on the equivalent block approach was developed. In the final section of this work, comparisons between experimental and numerical results are presented together with some preliminary conclusions on the appropriate modelling strategy and the values of the coefficient of restitution to be used for the seismic assessment of the out‐of‐plane rocking behaviour of this type of sacco stone masonry walls. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
6.
基于欧美规范确定了坐落在深厚覆盖层上KH抽水蓄能电站上、下库场地基本运行和最大设计地震动峰值加速度、反应谱和时程等动参数。首先依据场地区域地震烈度区划图、特征周期区划图和依据场地地质地震条件选取的5条种子实测地震动确定场地基岩输入加速度时程、峰值加速度和设计反应谱,进而基于各土层地质参数和一维弹性波传播模拟程序确定覆盖层表面的平均峰值加速度、平均反应谱和5条地震动时程,对所得到的平均反应谱和峰值加速度进行光滑处理后确定可用于各建筑物结构抗震设计的地震动参数,包括覆盖层表面水平向动力响应加速度时程、峰值加速度和设计反应谱。该方法可较好地保留输入地震动的真实动力特性,如持时、相位和频率等,为我国规范中建议的确定场地地震动参数的方法提供有益的补充。  相似文献   

7.
The basic aspects of testing small-scale masonry building models on simple earthquake simulators are discussed. Since the scale effects represent a difficult problem to solve, the overall seismic behaviour of structural systems, and not the behaviour of structulal details, has been studied by testing the reduced-sized models on a simple earthquake simulator. Accurate results regarding the dynamic behaviour and failure mechanism of the tested structures have been obtained by means of testing the relatively simple, adequately designed small-scale masonry building models. A simple earthquake simulator capable of simulating the uni-directional earthquake ground motion has been developed to study the seismic behaviour of masonry building models. Although a multipurpose programmable actuator was used to drive the shaking table, the comparison of the dynamic characteristics of the generated shaking-table motion and the earthquake acceleration records used for the simulation of seismic loads showed an acceptable degree of correlation between the input and output seismic motion.  相似文献   

8.
The dynamic behaviour of two adjacent single‐degree‐of‐freedom (SDOF) structures connected with a viscous damper is studied under base acceleration. The base acceleration is modelled as harmonic excitation as well as stationary white‐noise random process. The governing equations of motion of the connected system are derived and solved for relative displacement and absolute acceleration responses of connected structures. The response of structures is found to be reduced by connecting with a viscous damper having appropriate damping. For undamped SDOF structures, the closed‐form expressions for optimum damping of viscous damper for minimum steady state as well as minimum mean square relative displacement and absolute acceleration of either of the connected SDOF structures are derived. The optimum damper damping is found to be functions of mass and frequency ratio of two connected structures. Further, numerical results had indicated that the damping of the connected structures does not have noticeable effects on the optimum damper damping and the corresponding optimized response. This implies that the derived closed‐form expressions for optimum damper damping of undamped structures can also be used in practical applications for damped structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This article documents the analytical study and feasibility of placing a tuned mass damper in the form of a limber rooftop moment frame atop relatively stiff structures to reduce seismic acceleration response. Six existing structures were analytically studied using a suite of time history and response spectra records. The analyses indicate that adding mass in conjunction with a limber frame results in an increase in the fundamental period of each structure. The fundamental period increase generally results in a decrease in seismic acceleration response for the same time history and response spectra records. Owing to the limber nature of the rooftop frames, non‐linear analysis methods were required to evaluate the stability of the rooftop tuned mass damper frame. The results indicate the addition of a rooftop tuned mass damper frame reduces the seismic acceleration response for most cases although acceleration response can increase if the rooftop frame is not tuned to accommodate the specific structure's dynamic behaviour and localized soil conditions. Appropriate design of the rooftop tuned mass damper frame can result in decreased seismic acceleration response. This translates to safer structures if used as a retrofit measure or a more economical design if used for new construction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This paper deals with floor acceleration spectra, which are used for the seismic design and assessment of acceleration‐sensitive equipment installed in buildings. In design codes and in practice, not enough attention has been paid to the seismic resistance of such equipment. An ‘accurate’ determination of floor spectra requires a complex and quite demanding dynamic response history analysis. The purpose of the study presented in this paper is the development of a direct method for the determination of floor acceleration spectra, which enables their generation directly from the design spectrum of the structure, by taking into account the structure's dynamic properties. The method is also applicable to inelastic structures, which can greatly improve the economic aspects of equipment design. A parametric study of floor acceleration spectra for elastic and inelastic single‐degree‐of‐freedom (SDOF) and multiple‐degree‐of‐freedom structures was conducted by using (non)linear response history analysis. The equipment was modelled as an elastic single‐degree‐of‐freedom system. The proposed method was validated by comparing the results obtained with the more accurate results obtained in a parametric study. Due to its simplicity, the method is an appropriate tool for practice. In the case of inelastic structural behaviour, the method should be used in combination with the N2 method, or another appropriate method for simplified nonlinear structural analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This study attempts to propose dynamic centrifuge model tests as a method of seismic risk assessment in order to discover how stone architectural heritages with masonry structures have endured seismic load, and whether there is any possibility of future earthquake damage. Dynamic centrifuge tests have been conducted for one fifteenth scale models of Seok-ga-tap and the five-storey stone pagoda of Jeongnimsa temple site, which are Korean representative stone pagodas. In order to make input motions of the earthquake simulator, site investigation and site-specific response analysis have been performed. The models of two stone pagodas, which have the same number of pieces with the real structures, have been produced and the dynamic centrifuge tests have been conducted for the model pagodas. Accelerometers were attached at different heights of the pagoda. The measured acceleration records and frequency responses were analysed during dynamic centrifuge test. Two real earthquake records, Hachinohe and Ofunato earthquakes and a sweeping signal with ranged frequency were utilised for input motions of dynamic centrifuge tests to evaluate the behaviour of the stone pagodas. For Seok-ga-tap models, it was observed that acceleration tends to be amplified with height. The third floor body shows at most 2.5 amplification of acceleration in comparison to the surface ground. The amplification was at a frequency of 3.83 Hz and it was considered as the natural frequency of the pagoda. For the five-storey stone pagoda, the seismic wave energy significantly reduced while it passed the first body floor, and then the peak acceleration was gradually amplified upwards. It was found that the pagodas did not collapse when the peak acceleration of ground surface was raised to 0.4 g. Given that the maximum design seismic acceleration specified in Korean seismic design guide is 0.22 g and the amplification ratio of peak acceleration in the supporting ground of the pagodas ranges from 1.45 to 1.74, it can be shown that the two pagodas are stable against 2400-year return period earthquake level, and have excellent seismic performance.  相似文献   

12.
垂直向地震作用对节理岩体失稳破坏的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于线弹性断裂力学理论分析了垂直向地震作用对节理岩体地震动力破坏的影响。在仅考虑峰值时,最不利的单向地震动加速度方向是水平倾向坡外,双向则依据破裂机制是拉剪或压剪,加速度分别是水平倾向坡外与向下或向上的组合。地震动的幅值、作用方向及双向地震动的组合都可使岩体的破坏机制发生转化,并且是突变的、不可逆的。较低峰值的双向地震动产生的应力强度因子可能大于较高峰值的单向地震动所产生的应力强度应子。在岩体节理分布特征和静态应力场一定的初始条件下,第一个导致岩体中产生破裂的地震动加速度幅值及其方向的组合唯一地决定了岩体不可逆破坏发展的方向、机制及最终的破坏特征,其复杂性远大于静力作用时的情况。对岩体地震动力破坏问题的认识应充分考虑垂直向地震动的重要影响。  相似文献   

13.
地震荷载作用下加筋土挡墙动力特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用有限元软件对加筋土挡墙在地震荷载作用下的动力特性进行模拟分析,重点分析其在不同加筋长度、加筋间距以及峰值加速度条件下的动力响应特性。通过有限元分析一个高6m、底部为基础土的加筋土挡墙在地震荷载作用下的行为,针对理想化墙体研究加筋土挡墙的某些动力特性。模拟计算结果表明加筋土挡墙的加筋长度、加筋间距以及峰值加速度的变化对其水平位移、沉降及受力有较大影响。采用长度大的加筋材料可以有效减小加筋土挡墙的水平位移,但这样将导致加筋拉伸荷载的增大,同时也将导致加筋土挡墙的隆起增大。峰值加速度的大小对加筋土挡墙的水平位移有很大影响,当峰值加速度增大时水平位移也随之增大,但并不呈线性增长关系。减小加筋间距会有效地限制加筋土挡墙面板整体的水平位移,但在一定范围内减小加筋间距也会使加筋区域内土体底部挡墙的水平位移出现相对增大的现象,因此通过减小加筋间距来限制加筋土挡墙的位移在一定程度上具有局限性。  相似文献   

14.
地震波时域数值优化研究及应用   总被引:4,自引:1,他引:3  
将最小二乘拟合法与单自由度地震动力反应递归法相结合来解决地震观测和人工模拟地震波过程中速度、位移的基线漂移问题。首先以3次多项式来拟合加速度的均值线(一次优化);再对一次优化后的积分速度、位移时程仍存在的长周期基线波动问题,运用单自由度地震动力反应递归法进行二次优化。文中通过3个数值算例体现出优化算法的优越性,并将优化后的地震波加速度时程应用到江坪河水电站溢洪道控制段三维有限元动力计算分析中。结果表明,该算法消除了积分基线漂移影响,具有较好的可行性、数值稳定性和易操作性。  相似文献   

15.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

16.
地震的应变张量观测与应用前景   总被引:1,自引:1,他引:0       下载免费PDF全文
和泰名  李世愚 《地球物理学报》2017,60(11):4327-4340
地震发生时的动态应变场,在研究地震触发、地震破裂、地面破坏、水文和岩浆变化等方面都具有重要应用意义.地震的应变张量观测和现有的惯性地震仪观测的物理量不同.前者可以直接记录到地震发生时震源辐射的应变(应力)波,而后者记录到的是位移、速度或加速度.地震频率的应变测量在地震学中的应用前景主要表现在:①测量震源机制解理论预言的辐射4象限分布;②测量库仑应力变化;③换算成动态应力以评估地震烈度;④测量地震波的能量密度;⑤测量地震断层形变加速和形变局部化过程.用惯性地震仪的记录虽然在理论上也可以解算出动态应变值,然而种种原因导致计算结果的误差很大,往往不可接受.应变张量地震仪若能与现有的惯性地震仪配套起来,形成大规模台阵,则有可能推动应变地震学的诞生,在地震观测和地震学科领域引起重大革新.  相似文献   

17.
Ambient and forced vibration tests were carried out on the Beauharnois bridge, a unique, 177‐m combined suspension and cable‐stayed structure near Montreal, Canada. A rehabilitation program was completed on the bridge during which the deck was completely rebuilt with an orthotropic slab on two steel trusses. The rehabilitation program also included the addition of two pairs of stay cables on both towers, creating a hybrid suspension system. The paper presents a series of dynamic tests performed to evaluate the dynamic properties and the dynamic amplification factor (DAF) for the rehabilitated bridge. The experimental program involved the measurement of vertical, transverse, and longitudinal acceleration responses of the deck and tower under ambient and controlled traffic loads. Displacement, strain, and integrated acceleration DAFs were computed under different loading conditions. Modal properties were evaluated and used to correlate a three‐dimensional finite element model for the bridge, including non‐linear cable behaviour. The paper discusses the experimental setup as well as the techniques used to evaluate vibration frequencies, mode shapes, and the DAF. Correlation of numerical dynamic properties and experimental results is also presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The dynamic response of bridge piers with aseismic devices to earthquake excitation is evaluated by the stochastic equivalent linearization technique. The seismic acceleration is schematized through a Gaussian stationary random process. The pier is considered linear elastic, the span is idealized as a rigid mass, the restoring force of the device is represented through a non-linear differential model. The study of the complex modes of the linearized system gives an interpretation of the mechanical behaviour, leads to a formally elementary solution and highlights some phenomena which are typical of the hysteretic systems, particularly of those marked by weak hardening. Even though the solution is limited to the stationary field, it brings out several noteworthy considerations about the effective non stationary behaviour of the structure. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Recent seismic events have caused damage or collapse of invaluable historical buildings, further proving the vulnerability of unreinforced masonry (URM) structures to earthquakes. This study aims to understand failure of masonry arches—typical components of URM historic structures—subjected to horizontal ground acceleration impulses. An analytical model is developed to describe the dynamic behaviour of the arch and is used to predict the combinations of impulse magnitudes and durations which lead to its collapse. The model considers impact of the rigid blocks through several cycles of motion, illustrating that failure can occur at lower ground accelerations than previously believed. The resulting failure domains are of potential use for design and assessment purposes. Predictions of the analytical model are compared with results of numerical modelling by the distinct element method, and the good agreement between results validates the analytical model and at the same time confirms the potential of the distinct element framework as a method of evaluating complex URM structures under dynamic loading. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The seismic behaviour of a wide variety of structures can be characterized by the rocking response of rigid blocks. Nevertheless, suitable seismic control strategies are presently limited and consist mostly on preventing rocking motion all together, which may induce undesirable stress concentrations and lead to impractical interventions. In this paper, we investigate the potential advantages of using supplemental rotational inertia to mitigate the effects of earthquakes on rocking structures. The newly proposed strategy employs inerters, which are mechanical devices that develop resisting forces proportional to the relative acceleration between their terminals and can be combined with a clutch to ensure their rotational inertia is only employed to oppose the motion. We demonstrate that the inclusion of the inerter effectively reduces the frequency parameter of the block, resulting in lower rotation seismic demands and enhanced stability due to the well-known size effects of the rocking behaviour. The effects of the inerter and inerter-clutch devices on the response scaling and similarity are also studied. An examination of their overturning fragility functions reveals that inerter-equipped structures experience reduced probabilities of overturning in comparison with uncontrolled bodies, while the addition of a clutch further improves their seismic stability. The concept advanced in this paper is particularly attractive for the protection of rocking bodies as it opens the possibility of nonlocally modifying the dynamic response of rocking structures without altering their geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号