首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The triaxial nature of the tectonic stress in the earth’s crust favors the appearance of vertical fractures. The resulting rheology is usually effective anisotropy with orthorhombic and monoclinic symmetries. In addition, the presence of fluids leads to azimuthally varying attenuation of seismic waves. A dense set of fractures embedded in a background medium enhances anisotropy and rock compliance. Fractures are modeled as boundary discontinuities in the displacement u and particle velocity v as $[{\varvec{ \kappa}}\cdot {\bf u} + {\varvec{\eta}} \cdot {\bf v} ],$ where the brackets denote discontinuities across the fracture surface, ${\varvec{\kappa}}$ is a fracture stiffness, and ${\varvec{\eta}}$ is a viscosity related to the energy loss. We consider a transversely isotropic background medium (e.g., thin horizontal plane layers), with sets of long vertical fractures. Schoenberg and Muir’s theory combines the background medium and sets of vertical fractures to provide the 13 complex stiffnesses of the long-wavelength equivalent monoclinic and viscoelastic medium. Long-wavelength equivalent means that the dominant wavelength of the signal is much longer than the fracture spacing. The symmetry plane is the horizontal plane. The equations for orthorhombic and transversely isotropic media follow as particular cases. We compute the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts), and quality factors. The effective medium ranges from monoclinic symmetry to hexagonal (transversely isotropic) symmetry from the low- to the high-frequency limits in the case of a particle–velocity discontinuity (lossy case) and the attenuation shows typical Zener relaxation peaks as a function of frequency. The attenuation of the coupled waves may show important differences when computed versus the ray or phase angles, with triplication appearing in the Q factor of the qS wave. We have performed a full-wave simulation to compute the field corresponding to the coupled qP–qS waves in the symmetry plane of an effective monoclinic medium. The simulations agree with the predictions of the plane-wave analysis.  相似文献   

2.
Based on the Biot theory, the exact solutions for one‐dimensional transient response of single layer of fluid‐saturated porous media and semi‐infinite media are developed, in which the fluid and solid particles are assumed to be compressible and the inertial, viscous and mechanical couplings are taken into account. First, the control equations in terms of the solid displacement u and a relative displacement w are expressed in matrix form. For problems of single layer under homogeneous boundary conditions, the eigen‐values and the eigen‐functions are obtained by means of the variable separation method, and the displacement vector u is put forward using the searching method. In the case of nonhomogeneous boundary conditions, the boundary conditions are first homogenized, and the displacement field is constructed basing upon the eigen‐functions. Making use of the orthogonality of eigen‐functions, a series of ordinary differential equations with respect to dimensionless time and their corresponding initial conditions are obtained. Those differential equations are solved by the state‐space method, and the series solutions for three typical nonhomogeneous boundary conditions are developed. For semi‐infinite media, the exact solutions in integral form for two kinds of nonhomogeneous boundary conditions are presented by applying the cosine and sine transforms to the basic equations. Finally, three examples are studied to illustrate the validity of the solutions, and to assess the influence of the dynamic permeability coefficient and the fluid inertia to the transient response of porous media. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the numerical manifold method (NMM) is extended to study wave propagation across rock masses. First, improvements to the system equations, contact treatment, and boundary conditions of the NMM are performed, where new system equations are derived based on the Newmark assumption of the space–time relationship, the edge‐to‐edge contact treatment is further developed for the NMM to handle stress wave propagation across discontinuities, and the viscous non‐reflection boundary condition is derived based on the energy minimisation principle. After the modification, numerical comparisons between the original and improved NMM are presented. The results show that the original system equations result in artificial numerical damping, which can be overcome by the Newmark system equations. Meanwhile, the original contact scheme suffers some calculation problems when modelling stress wave propagation across a discontinuity, which can be solved by the proposed edge‐to‐edge contact scheme. Subsequently, the influence of the mesh size and time step on the improved NMM for stress wave propagation is studied. Finally, 2D wave propagation is modelled, and the model's results are in good agreement with the analytical solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In recent years, the authors have proposed a new double‐node zero‐thickness interface element for diffusion analysis via the finite element method (FEM) (Int. J. Numer. Anal. Meth. Geomech. 2004; 28 (9): 947–962). In the present paper, that formulation is combined with an existing mechanical formulation in order to obtain a fully coupled hydro‐mechanical (or HM) model applicable to fractured/fracturing geomaterials. Each element (continuum or interface) is formulated in terms of the displacements (u) and the fluid pressure (p) at the nodes. After assembly, a particular expression of the traditional ‘up’ system of coupled equations is obtained, which is highly non‐linear due to the strong dependence between the permeability and the aperture of discontinuities. The formulation is valid for both pre‐existing and developing discontinuities by using the appropriate constitutive model that relates effective stresses to relative displacements in the interface. The system of coupled equations is solved following two different numerical approaches: staggered and fully coupled. In the latter, the Newton–Raphson method is used, and it is shown that the Jacobian matrix becomes non‐symmetric due to the dependence of the discontinuity permeability on the aperture. In the part II companion paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.730 ), the formulation proposed is verified and illustrated with some application examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this study,the fractal dimensions of velocity fluctuations and the Reynolds shear stresses propagation for flow around a circular bridge pier are presented.In the study reported herein,the fractal dimension of velocity fluctuations(u′,v′,w′) and the Reynolds shear stresses(u′v′ and u′w′) of flow around a bridge pier were computed using a Fractal Interpolation Function(FIF) algorithm.The velocity fluctuations of flow along a horizontal plane above the bed were measured using Acoustic Doppler Velocity meter(ADV)and Particle Image Velocimetry(P1V).The PIV is a powerful technique which enables us to attain high resolution spatial and temporal information of turbulent flow using instantaneous time snapshots.In this study,PIV was used for detection of high resolution fractal scaling around a bridge pier.The results showed that the fractal dimension of flow fluctuated significantly in the longitudinal and transverse directions in the vicinity of the pier.It was also found that the fractal dimension of velocity fluctuations and shear stresses increased rapidly at vicinity of pier at downstream whereas it remained approximately unchanged far downstream of the pier.The higher value of fractal dimension was found at a distance equal to one times of the pier diameter in the back of the pier.Furthermore,the average fractal dimension for the streamwise and transverse velocity fluctuations decreased from the centreline to the side wall of the flume.Finally,the results from ADV measurement were consistent with the result from PIV,therefore,the ADV enables to detect turbulent characteristics of flow around a circular bridge pier.  相似文献   

6.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The dynamic response due to a spherical source of radius a embedded in an elastic and viscoelastic full-space is investigated at a distance R from the source. Previous solutions to the elastic case are extended to incorporate realistic source pressure functions. The elastic solution is then cast in a scale independent form in order to generalize the application. The results show that the near-field of the spherical source may be defined by R/a < 5. For this region the particle velocity and displacement decrease as R?2, and the risetime decreases as R?1. However. in the far-field region (R/a > 5) the particle velocity and displacement decrease as R?1, and the risetime is independent of R. A non-constant Q model is developed to model viscoelastic attenuation and a complete analytical solution for wave propagation is obtained by cascading the separate mechanisms of geometric attenuation and viscoelastic attenuation. A comparison of our analytical model with the results of dynamic finite element modelling shows excellent agreement. This suggests that the method of cascading the separate transfer functions is a valid approach for wave propagation in viscoelastic media.  相似文献   

8.
齐辉  丁晓浩  张洋 《岩土力学》2016,37(8):2151-2158
利用复变函数法和Green函数法给出了SH波对垂直界面附近椭圆形夹杂散射问题的解析解答。首先,将待求的半空间模型沿垂直边界分割为区域Ⅰ和区域Ⅱ两个直角域。通过保角映射的方法将区域Ⅰ内椭圆形夹杂的外域映射为单位圆外域,并利用镜像方法构造出两个区域内满足直角域边界条件的散射波场及适用的Green函数;其次,利用界面契合思想,通过在界面处添加附加力系的方法建立起满足界面处位移和应力连续条件的无穷代数方程组,并截断有限项求解;最后,给出了求解地表位移幅值的具体算例。结果表明,入射波数、入射角度、夹杂位置、垂直界面以及材料参数都对地表位移幅值的分布有影响。  相似文献   

9.
在建立双重介质热-水-力耦合微分控制方程的基础上,提出了裂隙岩体热-水-力耦合的三维力学模型,对不同介质分别建立以节点位移、水压力和温度为求解量的三维有限元格式,开发了双重介质热-水-力耦合分析的的三维有限元计算程序,在有限元数值分析中不连续面应力计算采用等厚度空间8节点节理单元进行离散,而不连续面渗流和热能计算时采用平面4节点等参单元进行离散,这样保证了不同介质之间的水量、热量交换和两类模型接触处节点水头、温度和位移相等。通过高温岩体地热开发算例,揭示了在热-水-力耦合作用下不连续面处于低应力区,其张开度随运行时间的延长呈非线性增加,非稳定渗流阶段不连续面显著地控制着渗流场的整体分布,它的水头远高于拟连续岩体介质的水头,而进入稳定渗流阶段不连续面的控渗作用不明显,由于高温岩体地热开发系统中存在大规模的热量补给,不连续面对岩体温度场分布的影响并不显著。  相似文献   

10.
余天堂 《岩土力学》2007,28(Z1):305-310
扩展有限元法是一种在常规有限元框架内求解强和弱不连续问题的新型数值方法,其原理是在裂尖附近用一些奇异函数和沿裂纹面用阶跃函数加强传统有限元的基,以考虑跨过裂纹的位移场的不连续,该加强策略允许计算网格独立于不连续体几何。讨论了扩展有限元法的一些数值方面,主要包括:水平集法确定界面和加强节点与加强方式、裂尖加强范围的选择、J积分区域的确定和积分方案等。  相似文献   

11.
An advanced hypoplastic constitutive model is used in probabilistic analyses of a typical geotechnical problem, strip footing. Spatial variability of soil parameters, rather than state variables, is considered in the study. The model, including horizontal and vertical correlation lengths, was calibrated using a comprehensive set of experimental data on sand from horizontally stratified deposit. Some parameters followed normal, whereas other followed lognormal distributions. Monte-Carlo simulations revealed that the foundation displacement uy for a given load followed closely the lognormal distribution, even though some model parameters were distributed normally. Correlation length in the vertical direction θv was varied in the simulation. The case of infinite correlation length was used for evaluation of different approximate probabilistic methods (first order second moment method and several point estimate methods). In the random field Monte-Carlo analyses with finite θv, the vertical correlation length was found to have minor effect on the mean value of uy, but significant effect on its standard deviation. As expected, it decreased with decreasing θv due to spatial averaging of soil properties.  相似文献   

12.
 Using lattice dynamic modelling of pure MgSiO3 clinopyroxenes, we have be able to simulate the properties of both the low-clino (P21/c) and a high-density-clino (C2/c) phases and our results are comparable with the high pressure (HP) X-ray study of these phases (Angel et al. 1992). The transition between the two phases is predicted to occur at 6GPa. The volume variation with pressure for both phases is described by a third-order Birch-Murnaghan equation of state with the parameters V 0 low=31.122 cm3·mol−1, K T0 low= 107.42 GPa, K′ T0 low=5.96, V 0 high=30.142 cm3·mol–1, K T0 high102.54 GPa and K′ T0  high=8.21. The change in entropy between the two modelled phases at 6GPa is ΔS 6 Gpa=−1.335 J·mol−1·K−1 and the equivalent change in volume is ΔV 6 GPa=−0.92 cm3·mol−1, from which the gradient of the phase boundary δPT is 0.0014 GPa·K−1. The variation of the bulk modulus with pressure was also determined from the modelled elastic constants and compares very well with the EOS data. The reported Lehmann discontinuity, ∼220 km depth and pressure of 7.11Gpa, has an increase in the seismic compressional wave velocity, v p , of 7.14% using the data given for PREM (Anderson 1989). At a pressure of 7GPa any phase transition of MgSiO3 pyroxene would be between ortho (Pbca) and high-clino. We find the value of v p at 7GPa, for modelled orthoenstatite (Pbca), is 8.41 km·sec−1 and that for the modelled high-clino phase at 7GPa is 8.93 km·sec−1, giving a dv p /v p of 6.18%. Received: July 26, 1996 / Revised, accepted: September 27, 1996  相似文献   

13.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of up formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
We develop a finite element discretization and multigrid solver for a Darcy–Stokes system of three-dimensional vuggy porous media, i.e., porous media with cavities. The finite element method uses low-order mixed finite elements in the Darcy and Stokes domains and special transition elements near the Darcy–Stokes interface to allow for tangential discontinuities implied by the Beavers–Joseph boundary condition. We design a multigrid method to solve the resulting saddle point linear system. The intertwining of the Darcy and Stokes subdomains makes the resulting matrix highly ill-conditioned. The velocity field is very irregular, and its discontinuous tangential component at the Darcy–Stokes interface makes it difficult to define intergrid transfer operators. Our definition is based on mass conservation and the analysis of the orders of magnitude of the solution. The coarser grid equations are defined using the Galerkin method. A new smoother of Uzawa type is developed based on taking an optimal step in a good search direction. Our algorithm has a measured convergence factor independent of the size of the system, at least when there are no disconnected vugs. We study the macroscopic effective permeability of a vuggy medium, showing that the influence of vug orientation; shape; and, most importantly, interconnectivity determine the macroscopic flow properties of the medium. This work was supported by the U.S. National Science Foundation under grants DMS-0074310 and DMS-0417431.  相似文献   

15.
Numerous efforts have been made to study how the spatial distribution of ground surface objects controls the image semivariogram. The present paper is centered on how the histograms and semivariograms of the individual bands x and y influence the spatial variation of a simple spectral ratio u = arctan(x/y). The image histogram of each separate band is described by a proper distribution. The exponential model is used to describe the semivariograms of x and y. Taking the first derivatives of the spectral ratio u for x and y and taking into account the mathematical behavior of the histograms of bands x and y, an approximate expression for the semivariogram γ u of the spectral ratio is derived. This mathematical expression shows how the spatial variation of the spectral ratio depends on the standard deviations of the histograms, as well as the ranges of the semivariograms of x and y. Experimentation with multispectral images is then carried out and it shows that theoretical predictions agree, in qualitative terms, with real data. The results and conclusions of this paper may be useful in assessing the efficiency of various spectral band ratios and vegetation indices, which are often used in geological and environmental research (mapping of hydrothermal zones and land cover types).  相似文献   

16.
模拟三维裂纹问题的扩展有限元法   总被引:4,自引:1,他引:3  
余天堂 《岩土力学》2010,31(10):3280-3285
扩展有限元法是一种在常规有限元框架内求解强和弱不连续问题的新型数值方法,其计算网格与不连续面相互独立,因此模拟移动不连续面时无需对网格进行重新剖分。给出了模拟三维裂纹问题的扩展有限元法。在常规有限元位移模式中,基于单位分解的思想加进一个阶跃函数和二维渐近裂尖位移场,反映裂纹处位移的不连续性。用两个水平集函数表示裂纹。采用线性互补法求解裂纹面非线性接触条件,不需要迭代,提高了计算效率。采用两点位移外推法计算裂纹前缘应力强度因子。给出了3个三维弹性静力问题算例,其结果显示了所提方法能获得高精度的应力强度因子,并能有效地处理裂纹面间的接触问题,同时表明扩展有限元结合线性互补法求解不连续问题具有较好的前景。  相似文献   

17.
A numerical algorithm for simulation of 2-D (axis-symmetric) wave propagation using a multidomain approach is proposed. The method uses a cylindrical coordinate system, Chebyshev and Fourier differential operators to calculate the spatial derivatives along the radial and vertical direction, respectively, and a Runge–Kutta time-integration scheme. The numerical technique is based on the solution of the equations of momentum conservation combined with the stress–strain relations of the fluid (drilling mud) and isotropic elastic media (drill string and formation). Wave modes and radiated waves are simulated in the borehole-formation system. The algorithm satisfies the reciprocity condition and the results agree with an analytical solution and low-frequency simulation of wave-propagation modes reported in the literature. Examples illustrating the propagation of waves are presented for hard and soft formations. Moreover, the presence of casing, cement, and formation heterogeneity have been considered. Since the algorithm is based on a direct (grid) method, the geometry and the properties defining the media at each grid point, can be general, i.e., there are no limitations such as planar interfaces or uniform (homogeneous) properties for each medium.   相似文献   

18.
The variance-based cross-variogram between two spatial processes, Z1 (·) and Z2 (·), is var (Z1 ( u ) – Z2 ( v )), expressed generally as a bivariate function of spatial locations uandv. It characterizes the cross-spatial dependence between Z1 (·) and Z2 (·) and can be used to obtain optimal multivariable predictors (cokriging). It has also been called the pseudo cross-variogram; here we compare its properties to that of the traditional (covariance-based) cross-variogram, cov (Z1 ( u ) – Z1 ( v ), Z2 ( u ) – Z2 ( v )). One concern with the variance-based cross-variogram has been that Z1 (·) and Z2 (·) might be measured in different units (apples and oranges). In this note, we show that the cokriging predictor based on variance-based cross-variograms can handle any units used for Z1 (·) and Z2 (·); recommendations are given for an appropriate choice of units. We review the differences between the variance-based cross-variogram and the covariance-based cross-variogram and conclude that the former is more appropriate for cokriging. In practice, one often assumes that variograms and cross-variograms are functions of uandv only through the difference uv. This restricts the types of models that might be fitted to measures of cross-spatial dependence.  相似文献   

19.
Softening solids are analysed under impact loading using a new numerical method which allows displacement discontinuities to propagate arbitrarily through a finite element mesh. The Dirac‐delta distributions that arise in the strain field of classical continuum theory in the presence of strain softening are interpreted as discontinuities in the displacement field. A new finite element procedure with Heaviside jumps added to the underlying displacement interpolation basis is able to capture displacement jumps independent of the spatial discretisation. The amplitudes of displacement jumps are represented by extra degrees of freedom at existing nodes. Numerical results for mode‐I and mode‐II failure due to impact loading are presented. The numerical results highlight the objectivity of the approach with respect to spatial discretisation under dynamic loading conditions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Observations of the threshold of movement of loosely packed gravel in a tidal current are described. For gravel with equivalent ‘spherical’ diameters D in the range 0.2 ?D? 5.0cm the critical friction velocity u*c, corresponding to the initiation of sediment transport, is given by u*c=7.0 D0.2. At large values of D within the quoted range, the value u*c is significantly lower than would be obtained by a Shields experiment (u*cD0.5). By comparing our values of u*c with those obtained under well-controlled laboratory conditions, the discrepancy with Shields is shown to be due to the open spacing between, and exposure of, individual pebbles on the seabed. By comparing our results with those from upland gravel streams and flume experiments, it is suggested that Shields assumed an excessively large water depth to particle size ratio as a constraint within which the critical sediment entrainment number 0c is valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号