首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
青藏高原古地磁研究新结果   总被引:16,自引:0,他引:16       下载免费PDF全文
董学斌  王忠民 《地质论评》1991,37(2):160-164
本文给出了青藏高原主要地体古生代至中生代的27个古地磁新数据,并综合前人资料,分析和探讨了青藏高原主要地体的古地理分布、地体边界、地体拼合时代及青藏高原隆升机制等地质问题,并初步建立了青藏高原主要地体演化模式。  相似文献   

2.
在前人古地磁工作的基础上,以亚东—格尔木地学断面走廊域为主,补充了29个古地磁新数据。本文根据这些资料,初步研究了青藏高原主要地体演化规律,同时对有关的雅鲁藏布江缝合带、班公湖—怒江缝合带及安多—丁青断裂进行了古地磁学分析和论证。根据古地磁数据,极移曲线的特征及综合前述几个缝合带的讨论,编绘了青藏高原地体演化模式图。本文就青藏高原的活动构造及隆升机制等地R问题也进行了简要分析。  相似文献   

3.
青藏高原东南缘新生代地壳运动的转换   总被引:1,自引:0,他引:1  
在青藏高原东南缘保山地体东部上新世营盘组玄武岩中开展的古地磁学研究,获得了可靠的高温剩磁分量。地层校正后的特征剩磁分方向为Ds=166.5o, Is=–19.3o, k=41.9, a95=5.1o, N=22(采点)。褶皱检验显示其为原生特征剩磁分量。上新世古地磁数据显示,保山地体东部区域自上新世以来相对于东亚构造稳定区古地磁参考极发生了14.5o±4.8o的逆时针旋转运动。虽然保山地体东部上新世的逆时针旋转运动与保山地体其它区域古近纪至中新世的顺时针旋转变形截然相反,但是其与畹町走滑断裂和南汀河走滑断裂上新世以来的左旋走滑运动相吻合。本次研究通过保山地体和腾冲地体内部新生代古地磁数据及地体边界构造带活动演化的综合分析,指出自古近纪早期印度板块与欧亚大陆初始碰撞以来,青藏高原东南缘腾冲地块和保山地体在渐新世末期至早中新世时期,以及上新世早期分别发生了地壳运动方式的转换。保山地体地壳的运动学方式直接控制了地体边界走滑断裂的构造演化过程。  相似文献   

4.
吉林省南部早奥陶世头足类生物地层单元可建立9个化石带,代表了华北地体型早奥陶世鹦鹉螺生物群。通过与其它含早奥陶世鹦鹉螺生物群地体的对比,结合有关古地磁资料,提出识辨这些地体的移置、增生及聚合的历史。  相似文献   

5.
塔里木及其周边古地磁研究与盆地形成演化   总被引:19,自引:3,他引:19  
在综合研究前人古地磁成果基础上,对新藏公路、中巴公路沿线、康苏、托云及库尔干等地进行了以古地磁为主的综合地质研究。通过研究,获得了库尔干,康苏,托云,中巴公路沿线的奥依塔格、明铁盖,新藏公路沿线的库地、麻札、康百瓦—红柳滩、奇台达坂、甜水海、岔沟口、空喀山口、库尔那克堡和班公湖等地区有关地质年代的古地磁新成果。根据近年来地层、古生物、同位素测年等新的研究成果,对地层划分进行了修正。根据收集的塔里木地块数百个古地磁数据及本次研究成果,按新的地层划分意见进行综合整理、归纳、统计,获得了塔里木地块综合古地磁极34个,建立了塔里木地块震旦—第三纪综合古地磁极移曲线。为探讨塔里木地块古环境、古气候变迁和油气开发提供了古地磁依据。通过对塔里木磁性地层资料综合整理、分析,对侏罗—白垩纪地层界线划分、二叠—三叠纪地层界线划分进行了探讨,并对泥盆纪、震旦纪地层磁性特征进行了探讨。在前人同位素研究基础上,补作了少量同位索研究工作,获得了新藏公路新生代火山岩、花岗岩及托云地区火山岩测年成果,为地层划分及构造演化探讨提供了依据。据航磁资料,塔里木地块划分成三个性质不同的地体:巴楚—塔克拉玛干地体;库鲁克塔格地体和阿克苏—车尔臣河地  相似文献   

6.
川滇菱形地块白垩纪古地磁学特征   总被引:3,自引:0,他引:3       下载免费PDF全文
在位于川滇菱形地块的西昌西南大德里向斜两翼的白恶系红和岩内采集古地磁学定向样品96个,进行了古地学研究,研究结果表明,西昌晚白垩世末期的古地磁偏角为5.9°,古地磁倾角为45.8°,地磁极位置为北纬84.7°,东径193.3°,将该数据与作前期研究结果对比,则可见自楚雄至无谋,进而至西昌,其古地磁偏角逐渐靠近正北,而古地磁极纬度渐次升高,这反映了川滇菱形地块内的断块呈自西南至东北逐渐减弱的顺时针  相似文献   

7.
本文根据黄陵地体、神农架地体和武当地体在沉积建造、岩石组合、变质作用、岩浆活动特点,现有同位素地质年龄及古地磁资料,进行了详细分析与区域性对比。并运用板块构造理论,对上述三个地体从元古代到中生代时期,在中国二个古板块运移过程中,它们发生离散和拼合的演化历史。还指出本区的地震活动带的分布,是受地体之间的沉陷带或地体内部深断裂的控制。  相似文献   

8.
东北地块大兴安岭地区的古地磁研究   总被引:2,自引:0,他引:2  
本文通过对东北地块大兴安岭地区古生界泥盆系,奥陶系及岩体的古地磁研究,结合已有的古地磁研究成果,发现奥陶纪时,东北地块,东北地块,西伯利亚地块,华北地块很接近,表明三者此时可能为联合古陆,泥盆纪时,东北地块快速向南向北运动,导致三者之间的分离,至晚二叠纪,东北地块靠近华北地块而远离西伯利亚地块,至晚株罗世-早白垩世,三者又拼合在一起。  相似文献   

9.
白垩纪以来中国西部地体运动的古地磁证据和问题   总被引:4,自引:0,他引:4  
地质证据表明中国西部各地体在白垩纪之前已经增生到欧亚大陆之上 ,但这些地体自白垩纪以来的古地磁极位置与稳定欧亚大陆的古地磁极位置存在较大差异 ,对其最可能的解释是发生在晚白垩世与古新世之交 (约 6 5Ma)印度板块和欧亚大陆之间的碰撞及其后印度板块的持续北向挤压 ,使得这些地体之间以及这些地体与稳定欧亚大陆之间发生了相对位移和地体内部的变形。文中利用现有的古地磁研究成果 ,计算了自白垩纪以来中国西部各地体与欧亚稳定大陆之间的南北向相对位移量。塔里木地块和柴达木地体的古地磁数据表明 ,阿尔金断裂至少经历了四期活动。在欧亚地区普遍存在的第三纪磁倾角偏缓现象 ,很可能反映了在该地区长期存在非偶极子场。  相似文献   

10.
在北部和中部美国山脉及加勒比海和南美安第斯山脉间目前已发现了至少70个构造地层地体。这些地体的构造演化和在时空上的成因已引起了争论(例Howell等,1985;Debiche等,1987;Wilson等,即出版)。这个争论是在用古地磁和古生物地层资料企图来确定这些地体的构造演化时的产生。区域地体研究者根据不同的地体的演化史已提出了不同的观点,而且都是根据亲自实践的各种准确资料。在解译“交通塞”构造时就产生了一些争议,其中一些地体肯定在运动方向上产生过间歇性的反转,在同一板块上,其它的地体也跟着反转。其中一些资料明显可见是不可靠的,但我们解决这些争论必须依据一些必不可少的可靠资料。我们已形成了一个体  相似文献   

11.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

12.
Abstract The Nadanhada terrane, a Jurassic disrupted terrane in Heilongjiang Province of China, is principally composed of Permo- Carboniferous limestone and greenstone, Triassic bedded chert and middle Jurassic siliceous shale, all enclosed within younger (presumably Late Jurassic- Early Cretaceous) clastics. Palaeontological and lithological characteristics and structural features of these formations are entirely identical to those of the Mino terrane of the Japanese Islands. Prior to opening of the Sea of Japan, these terranes formed a single superterrane together with the Western Sikhote-Alin terrane. Tectono-stratigraphic terranes very similar to the Nadanhada and Mino terranes are also found in the Ryukyu are, the Philippines and probably in Borneo. All these terranes constituted a belt of accretionary complexes during Late Jurassic and / or Early Cretaceous time along the eastern continental margin of Asia after completion of the Triassic collage of the Chinese continent.  相似文献   

13.
大别山前寒武纪变质地体基本组成   总被引:5,自引:0,他引:5  
桑隆康  游振东 《地质论评》1994,40(3):265-273
本文以新城-圻春断裂为界将大别山前寒武纪变质地体划分为华北陆块南缘和场子陆块北缘两个次级变质地体,两个次级地体不仅在地球物理,构造变形方面明显不同,而且在物质成分上有显著差异,它们有各自独立的变质地层系统,遭受了不同类型的变质作用,有完全不同的岩浆活动图象,上述差异均可指示华北,扬子两古陆碰掸对接时扬子陆块北缘向北俯冲至华北陆块南缘之下,这可能包括两次合作用,从元古代开始至中生代最终结束的长期复杂  相似文献   

14.
This paper reviews recent progress on the geotectonic evolution of exotic Paleozoic terranes in Southwest Japan, namely the Paleo-Ryoke and Kurosegawa terranes. The Paleo-Ryoke Terrane is composed mainly of Permian granitic rocks with hornfels, mid-Cretaceous high-grade metamorphic rocks associated with granitic rocks, and Upper Cretaceous sedimentary cover. They form nappe structures on the Sambagawa metamorphic rocks. The Permian granitic rocks are correlative with granitic clasts in Permian conglomerates in the South Kitakami Terrane, whereas the mid-Cretaceous rocks are correlative with those in the Abukuma Terrane. This correlation suggests that the elements of Northeast Japan to the northeast of the Tanakura Tectonic Line were connected in between the paired metamorphic belt along the Median Tectonic Line, Southwest Japan. The Kurosegawa Terrane is composed of various Paleozoic rocks with serpentinite and occurs as disrupted bodies bounded by faults in the middle part of the Jurassic Chichibu Terrane accretionary complex. It is correlated with the South Kitakami Terrane in Northeast Japan. The constituents of both terranes are considered to have been originally distributed more closely and overlay the Jurassic accretionary terrane as nappes. The current sporadic occurrence of these terranes can possibly be attributed to the difference in erosion level and later stage depression or transtension along strike-slip faults. The constituents of both exotic terranes, especially the Ordovician granite in the Kurosegawa-South Kitakami Terrane and the Permian granite in the Paleo-Ryoke Terrane provide a significant key to reconstructing these exotic terranes by correlating them with Paleozoic granitoids in the eastern Asia continent.  相似文献   

15.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

16.
<正> 本文涉及的中上元古宇包括下寒武统之下,吕梁运动面(即相当于长城系底面)以上的一套地层。中、晚元古宙的沉积在我国东部分布较广,在不同的小区内,在沉积建造和地层序列上常显示出各自的特色。可按沉积时限、地壳构造活动性、沉积物特征和生物群面貌将东部中上元古宇分为四种沉积类型,简称蓟县型、旅大型、扬子型和江南型,名称来源于代表性剖面所在地或沉积区的地名。  相似文献   

17.
从板块构造到地体   总被引:4,自引:0,他引:4  
从板块构造的发生、发展到地体概念的提出,论述了地体解析和拼贴构造,并根据中国东部的地体研究,特别是中国东北那丹哈达地体和日本美浓地体的对比研究,论述了亚洲东部中生代构造发展史,认为在侏罗纪时,亚洲大陆边缘的地体拼贴活动已经开始,形成了拼贴沉积的复合地体;白垩纪时由于大陆边缘的侧向挤压和离散作用,这些地体产生左行运动和变形;早第三纪晚期由于日本海的扩张,形成了弧形的日本列岛。  相似文献   

18.
Abstract Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska. These terranes differ in protoliths, structural level and cooling ages. A structurally complex zone of gently north-dipping tectonites separates the two terranes. The northern, structurally higher Taylor Mountain terrane includes garnet amphibolite, biotite ± hornblende gneiss, marble, quartzite, metachert, pelitic schist and cross-cutting granitoids of intermediate composition (including the Late Triassic to Early Jurassic Taylor Mountain batholith). Lithological associations and isotopic data from the granitoids indicate an oceanic or marginal basin origin for the Taylor Mountain terrane. 40Ar/39Ar metamorphic cooling ages from the Taylor Mountain terrane are latest Triassic to earliest Middle Jurassic. The southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane is made up of quartz-biotite schist and gneiss, augen gneiss, pelitic schist, garnet amphibolite and quartzite; we interpret it to comprise a continental margin and granitoid belt built on North American crust. Metamorphic cooling ages from the Lake George subterrane are almost entirely Early Cretaceous. Geothermobarometric analysis of garnet rims and adjacent phases in garnet amphibolite and pelitic schist from the Taylor Mountain terrane and Lake George subterrane indicate peak metamorphic conditions of 7.5-12 kbar at 555-715° C in the northern part of the Taylor Mountain terrane, in which NNE-vergent shear fabrics are preserved; 6.5-10.8 kbar at 520-670° C within the contact zone between the two terranes, in which NW-vergent shear fabrics predominate; and 6.8-11.8 kbar at 570-700° C in the Lake George subterrane of the Yukon-Tanana terrane, in which NW-vergent shear is recorded in the northern part of the study area and SE-vergent shear in the southern part. Where the two shear-sense directions occur together in the northern Lake George subterrane and, locally, in the contact zone, fabrics that record NW-vergent shear are more penetrative and preceded fabrics that record SE-vergent shear. We interpret the pressure, temperature, kinematic and age data to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. The difference in metamorphic cooling ages between the Taylor Mountain terrane and adjacent parts of the Lake George subterrane is best explained by Early Cretaceous unroofing of the Lake George subterrane caused by crustal extension, recorded in its younger top-to-the-SE fabric.  相似文献   

19.
中国东北地块群及其构造演化   总被引:4,自引:0,他引:4  
东北地块群主要有额尔古纳、兴华、松嫩、佳木斯和兴凯等地块,它们都不是从西伯利亚克拉通分裂出来的,而都具有独立的演化史.额尔古纳、兴华地块参与到西伯利亚板块东南大陆边缘古亚洲洋弧盆体系中,组成岛弧-山弧或弧后盆地的一部分;松嫩、佳木斯和兴凯地块分别为泛古洋和古太平洋作用区内亲西伯利亚和亲华北的地块,具有前白垩纪较复杂的演化史.在较详细讨论了东北地块群的构造演化的基础上,认为东北大地构造格架,除可以划分出西伯利亚板块和华北板块外,还应划分出滨太平洋松嫩-佳木斯联合地块、环太平洋兴凯地块、胶辽地块和那丹哈达地体.  相似文献   

20.
The South Anyui suture is a major tectonic boundary in NE Asia, believed to represent the remains of an ocean basin which separated Siberia from North America in Jurassic time. Its history also figures prominently in the Mesozoic reconstruction of the Arctic and the origin and evolution of the Amerasia basin. Three types of proposed trends of the South Anyui suture are evaluated. 1) The suture ends near the Kolyma River mouth where it meets the rotational transform. The paper, however, proves that the suture continues further westward up to Big Lyakhov Is. Consequently, a simple geometric rotational model for Amerasia basin origin must be rejected. 2) The suture trends from Big Lyakhov to the Anjou islands. The Anjou islands geology is examined, and it is concluded that the suture could not go through them. Hence, all proposed versions of the rotational hypothesis of the Amerasia basin opening are claimed to be invalid. 3) A proposed Taimyrian connection of the suture is examined, and it is concluded that this model must be rejected as well. The failure of all previously suggested models for the suture extent through the New Siberian islands and Laptev Sea means that in Early Mesozoic there was no oceanic basin that separated the New Siberian–Chukotka terrane from Siberia. Thus Siberia and North America formed a continuous continent in Jurassic time. This paper presents evidence that the South Anyui suture has instead turned back from Big Lyakhov island and followed a sinuous path designated as the Chroma Loop before connecting with the Kolyma Loop suture. On this model the South Anyui suture can be interpreted as a small segment of extensive boundary which separated the Amerasia Jurassic margin and terranes accreted to it from the Pacific. The modern boundary around the North Pacific is also quite sinuous. It was suggested that in Jurassic time it was straighter and the Amerasia ocean was originated as a common back-arc basin. Finally a new two-pole parallelogram hypothesis for the Amerasia basin opening is suggested and the approaches to its verification are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号