首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic observation of solar flares in the hard X-ray energy range, particularly the 20 ∼ 100 keV region, is an invaluable tool for investigating the flare mechanism. This paper describes the design and performance of a balloon-borne hard X-ray spectrometer using CdTe detectors developed for solar flare observation. The instrument is a small balloon payload (gondola weight 70 kg) with sixteen 10×10×0.5 mm CdTe detectors, designed for a 1-day flight at 41 km altitude. It observes in an energy range of 20−120 keV and has an energy resolution of 3 keV at 60 keV. The second flight on 24 May 2002 succeeded in observing a class M1.1 flare.  相似文献   

2.
3.
In 2009, the Centre National d??Etudes Spatiales (CNES) carried out an assessment study on a ??Fresnel telescope?? concept based on a two-spacecraftformation flying configuration. This concept uses a binary Fresnel zone plate, and the principle of diffraction focusing, which allows high resolution optical imaging for astrophysics. In addition to CNES, the Laboratoire d??Astrophysique de Toulouse Tarbes (LATT) was deeply involved at two levels: through Research & Technology (R&T) studies to simulate and validate on a test bench the Fresnel concept performance, and through active participation in the CNES team for the optical aspects and to define the astrophysical fields of Fresnel-based space missions. The study was conducted within the technical limitations that resulted from a compromise between the R&T state of the art and the potential scientific domains of interest. The main technical limitations are linked to the size of the primary Fresnel array and to its usable spectral bandwidth. In this framework, the study covers ambitious architectures, correlating the technology readiness of the main critical components with the time-scale and programmatic horizons. The possible scientific topics arise from this range of missions. In this paper, I present a mission launched by a Soyuz, dedicated to astrophysics in the Ultra Violet (UV) band: 120 to 300 nm using a 4-m Fresnel array. It could be competitive in the next fifteen years, whereas a 10-m aperture mission in different bands; UV, visible or Infra Red (IR) (up to 6 ??m) could be achievable in the future. Larger missions, using a primary array larger than 20 m, request technologies not yet available but that will probably be based on new inflatable structures with membranes, as already tested in the USA for other ends.  相似文献   

4.
SVOM (Space-based multi-band astronomical Variable Objects Monitor) is an international cooperation project led by the Chinese National Space Agency (CNSA) and the Centre National d’Etudes Spatiales of France (CNES). SVOM focuses on the detection of Gamma-ray bursts (GRBs). It is developed by the Chinese Academy of Sciences (CAS), CNES, and several other French laboratories. With the multi-band observation, fast manoeuvrability, flexible operation, and the capability of ground follow-up observation, the SVOM project will be the most important GRB detection mission after the SWIFT project, and will open a wide exploration field. In this paper, the project management, science objectives, the satellite platform and payloads, the ground segment, and operation concept are illustrated.  相似文献   

5.
J-Ph. Bernard  P. Ade  Y. André  J. Aumont  L. Bautista  N. Bray  P. de Bernardis  O. Boulade  F. Bousquet  M. Bouzit  V. Buttice  A. Caillat  M. Charra  M. Chaigneau  B. Crane  J.-P. Crussaire  F. Douchin  E. Doumayrou  J.-P. Dubois  C. Engel  P. Etcheto  P. Gélot  M. Griffin  G. Foenard  S. Grabarnik  P. Hargrave  A. Hughes  R. Laureijs  Y. Lepennec  B. Leriche  Y. Longval  S. Maestre  B. Maffei  J. Martignac  C. Marty  W. Marty  S. Masi  F. Mirc  R. Misawa  J. Montel  L. Montier  B. Mot  J. Narbonne  J-M. Nicot  F. Pajot  G. Parot  E. Pérot  J. Pimentao  G. Pisano  N. Ponthieu  I. Ristorcelli  L. Rodriguez  G. Roudil  M. Salatino  G. Savini  O. Simonella  M. Saccoccio  P. Tapie  J. Tauber  J.-P. Torre  C. Tucker 《Experimental Astronomy》2016,42(2):199-227
Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project, which aims at characterizing one of these foreground sources, the polarized continuum emission by dust in the diffuse interstellar medium. The PILOT experiment also constitutes a test-bed for using multiplexed bolometer arrays for polarization measurements. This paper presents the instrument and its expected performances. Performance measured during ground calibrations of the instrument and in flight will be described in a forthcoming paper.  相似文献   

6.
L. Paternò  S. Sofia 《Solar physics》1994,152(1):303-308
The basic design and the scientific aims of the EUDOSSO project are described. EUDOSSO is a space instrument conceived for achieving very high accuracy and long term stability in measuring solar diameter time variations. Therefore it is suitable for measuring long periodg-modes, oblateness and long-term diameter variations possibly relevant to climatic changes.  相似文献   

7.
随着RTS (Real-Time Service)工程的发展,时频用户可以运用实时精密单点定位(Precise Point Positioning, PPP)技术进行时间传递研究.作为RTS工程的主要参与者,CNES (Centre National d’Etudes Spatiales)分析中心开展PPPWIZARD (Precise Point Positioning with Integer and Zero-difference Ambiguity Resolution Demonstrator)工程验证实时PPP模糊度固定技术.为了探究多系统观测值和实时PPP模糊度固定对时间传递的性能提升,在综合GPS (Global Positioning System)、GLONASS (GLObal NAvigation Satellite System)、 BDS (Bei Dou navigation System)和Galileo的多系统观测值的基础上,使用CNES分析中心播发的实时产品开展PPP时间传递验证实验,检验了4种不同PPP模式的工作性能.实验结果证明,在多种不同工作模式当中,综合运用多系统观测值和GPS模糊度固定技术进行PPP时间传递的标准差结果最小,标准差相比于传统GPS PPP时间传递平均下降38.1%.  相似文献   

8.
We have designed and built an instrument to measure and monitor the “nightglow” of the Earth’s atmosphere in the near ultraviolet (NUV). In this paper we describe the design of this instrument, called NIGHTGLOW. NIGHTGLOW is designed to be flown from a high altitude research balloon, and circumnavigate the globe. NIGHTGLOW is a NASA, University of Utah, and New Mexico State University project. A test flight took place from Palestine, Texas on July 5, 2000, lasting about 8 h. The instrument performed well and landed safely in Stiles, Texas with little damage. The resulting measurements of the NUV nightglow are compared with previous measurements from sounding rockets and balloons.  相似文献   

9.
With the development of real-time service (RTS) project, timing users can apply the real-time precise point positioning (PPP) technique for time transfer. As a participant in the RTS project, the Centre National d’Etudes Spatiales (CNES) implements the PPPWIZARD (Precise point positioning with Integer and Zero-difference Ambiguity Resolution Demonstrator) project to validate the PPP with ambiguity resolution. In order to analyze the contribution of multiple global navigation satellite system (multi-GNSS) and real-time ambiguity resolution to time transfer, our experiment used the observation from multi-GNSS, including GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), BDS (BeiDou navigation System), and Galileo for data processing. Meanwhile, the real-time products from CNES were utilized to examine the performance of four different PPP processing modes. The experimental results indicated that, of all the processing modes, the time transfer using multi-GNSS PPP with GPS ambiguity resolution had the smallest standard deviations (STDs). The STD value was decreased by 38.1%, compared with the traditional time transfer results using GPS PPP.  相似文献   

10.
Thanks to INTEGRAL’s long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft gamma rays. This has produced a wealth of new scientific results, which we will review here. Since SGR 1806-20 was particularly active during the last two years, more than 300 short bursts have been observed with INTEGRAL and their characteristics have been studied with unprecedented sensitivity in the 15–200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. In addition, a particularly active state, during which 100 bursts were emitted in 10 minutes, has been observed on October 5 2004, indicating that the source activity was rapidly increasing. This eventually led to the Giant Flare of December 27th 2004, for which a possible soft gamma-ray (>80 keV) early afterglow has been detected. The deep observations allowed us to discover the persistent emission in hard X-rays (20–150 keV) from 1806-20 and 1900+14, the latter being in a quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL. D.G. acknowledges the French Space Agency (CNES) for financial support. Based on observations with INTEGRAL, an ESA project with instruments and the science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA. ISGRI has been realized and maintained in flight by CEA-Saclay/DAPNIA with the support of CNES. K.H. is grateful for support under NASA’s INTEGRAL U.S. Guest Investigator program, Grants NAG5-13738 and NNG05GG35G.  相似文献   

11.
12.
Celestial Mechanics and Dynamical Astronomy - Quasi-satellite orbits (QSOs) are considered by JAXA’s MMX mission, in which CNES is involved, for the scientific observation of the Martian moon...  相似文献   

13.
We have released an archive of all observational data of the VUV spectrometer Solar Ultraviolet Measurements of Emitted Radiation (SUMER) on SOHO that have been acquired until now. The operational phase started with ‘first light’ observations on 27 January 1996 and will end in 2014. Future data will be added to the archive when they become available. The archive consists of a set of raw data (Level 0) and a set of data that are processed and calibrated to the best knowledge we have today (Level 1). This communication describes step by step the data acquisition and processing that has been applied in an automated manner to build the archive. It summarizes the expertise and insights into the scientific use of SUMER spectra that has accumulated over the years. It also indicates possibilities for further enhancement of the data quality. With this article we intend to convey our own understanding of the instrument performance to the scientific community and to introduce the new, standard FITS-format database.  相似文献   

14.
Satellite instrumentations designed for planetary studies are often open to other interesting applications from ground: not only one can efficiently carry out detailed calibrations before space data become available, but also the prototypes of the satellite instruments can be successfully employed in different fields ranging from astrophysics to cosmology. Both possibilities are opened by coupling these instruments with ground based telescopes having short focal ratios, like those designed for far infrared studies. These possibilities are particularly amazing in view of the long delay usually present between the launch and the collection of the first scientific data (months in case of Mars Express, years in case of Rosetta).

We propose in this article to employ immediately this technology, by coupling the developing model of the Image-Spectrometer VIRTIS-M with the ground telescope MITO.

This project will allow us to perform a better calibration of the space qualified instrument and observational campaigns, including some important cosmological investigations.  相似文献   


15.
Stratospheric dust layers photographically observed in the altitude range 16–28 km from a balloon gondola floating at 36.6 km altitude on 3 May 1982 over southern France are identified as originating from the 4 April eruption of the Mexican El Chichon volcano. The identification is compatible with the zonal air motions leading to lidar detections over Japan, United States and Italy. The observations confirm the eastward motion of part of the injected material below 20 km altitude and the westward motion above this altitude. They imply a northward component of the meridional motion of the order of 20° (from 17°N to 37°N) in one turn around the Earth. The observation of scattered sunlight in blue and red light allows to deduce some optical properties of the aerosol, mainly those implied by the wavelength dependence of the scattering efficiency being highly variable, particularly above the Junge layer.  相似文献   

16.
This paper analyses two height energy astrophysics missions, MAX and SIMBOL-X, which have been studied in CNES in the frame of a large formation flying study program. It is particularly interesting to notice that the scientific specifications of two different missions lead to the same engineering solutions for the whole mission aspects and then advocate for a similar space segment architecture and re-use of common elements, thus allowing potential cost reductions for a second mission.In deed, the same level of data to download and a similar signal-to-noise ratio requirements leads to the same orbit and communications system, the same level of pointing precision and distance inter satellites lead to the same formation flying Guidance Navigation and Command (GNC) architecture. At the end, the same level of mass and thermal constraints leads to the same range of platform and the same propulsion systems and finally to the same launcher.  相似文献   

17.
SUNRISE is a balloon‐borne telescope with an aperture of one meter. It is equipped with a filter imager for the UV wavelength range between 214 nm and 400 nm (SUFI), and with a spectro‐polarimeter that measures the magnetic field of the photosphere using the Fe I line at 525.02 nm that has a Landé factor of 3. SUNRISE performed its first science flight from 8 to 14 June 2009. It was launched at the Swedish ESRANGE Space Center and cruised at an altitude of about 36 km and geographic latitudes between 70 and 74 degrees to Somerset Island in northern Canada. There, all data, the telescope and the gondola were successfully recovered. During its flight, Sunrise achieved high pointing stability during 33 hours, and recorded about 1.8 TB of science data. Already at this early stage of data processing it is clear that SUNRISE recorded UV images of the solar photosphere, and spectropolarimetric measurements of the quiet Sun's magnetic field of unprecedented quality (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The Hubble Space Telescope has been the most successful space astronomy project to date, producing images that put the public in awe and images and spectra that have produced many scientific discoveries. It is the natural culmination of a dream envisioned when rocket flight into space was first projected and a goal set for the US space program soon after NASA was created. The design and construction period lasted almost two decades and its operations have already lasted almost as long. The capabilities of the observatory have evolved and expanded with periodic upgrading of its instrumentation, thus realizing the advantages of its unique design. The success of this long-lived observatory is closely tied to the availability of the Space Shuttle and the end of the Shuttle program means that the end of the Hubble program will follow before long.  相似文献   

19.
In 2004 and 2005 CNES decided to perform phase 0 studies on 4 scientific missions: ASPICS (Solar physics), MAX (γ-rays Laue lens), PEGASE (hot Jupiter study by an interferometer in the 2μm to 4.5μm range) and SIMBOL-X (hard X-rays telescope). This last mission had already undergone a feasibility study in 2003 (ref. [4]), however a complementary study was necessary to take into account the possibilities of increasing the payload mass allowance, as well as the developments in the payload design and science goals (see ref. [1]). The output of this new detailed study is described hereafter.  相似文献   

20.
The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号