首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Twenty-four new zircon and apatite fission track ages from the Getic and Danubian nappes in the South Carpathians are discussed in the light of a compilation of published fission track data. A total of 101 fission track ages indicates that the Getic nappes are generally characterized by Cretaceous zircon and apatite fission track ages, indicating cooling to near-surface temperatures of these units immediately following Late Cretaceous orogeny.The age distribution of the Danubian nappes, presently outcropping in the Danubian window below the Getic nappes, depends on the position with respect to the Cerna-Jiu fault. Eocene and Oligocene zircon and apatite central ages from the part of the Danubian core complex situated southeast of this fault monitor mid-Tertiary tectonic exhumation in the footwall of the Getic detachment, while zircon fission track data from northwest of this fault indicate that slow cooling started during the Latest Cretaceous. The change from extension (Getic detachment) to strike-slip dominated tectonics along the curved Cerna-Jiu fault allowed for further exhumation on the concave side of this strike-slip fault, while exhumation ceased on the convex side. The available fission track data consistently indicate that the change to fast cooling associated with tectonic denudation by core complex formation did not occur before Late Eocene times, i.e. long after the cessation of Late Cretaceous thrusting.Core complex formation in the Danubian window is related to a larger-scale scenario that is characterized by the NNW-directed translation, followed by a 90° clockwise rotation of the Tisza-Dacia “block” due to roll-back of the Carpathian embayment. This led to a complex pattern of strain partitioning within the Tisza-Dacia “block” adjacent to the western tip of the rigid Moesian platform. Our results suggest that the invasion of these southernmost parts of Tisza-Dacia started before the Late Eocene, i.e. significantly before the onset of Miocene-age rollback and associated extension in the Pannonian basin.  相似文献   

2.
High-pressure (HP) metamorphic rocks, including garnet peridotite, eclogite, HP granulite, and HP amphibolite, are important constituents of several tectonostratigraphic units in the pre-Alpine nappe stack of the Getic–Supragetic (GS) basement in the South Carpathians. A Variscan age for HP metamorphism is firmly established by Sm–Nd mineral–whole-rock isochrons for garnet amphibolite, 358±10 Ma, two samples of eclogite, 341±8 and 344±7 Ma, and garnet peridotite, 316±4 Ma.

A prograde history for many HP metamorphic rocks is documented by the presence of lower pressure mineral inclusions and compositional zoning in garnet. Application of commonly accepted thermobarometers to eclogite (grt+cpx±ky±phn±pg±zo) yields a range in “peak” pressures and temperatures of 10.8–22.3 kbar and 545–745 °C, depending on tectonostratigraphic unit and locality. Zoisite equilibria indicate that activity of H2O in some samples was substantially reduced, ca. 0.1–0.4. HP granulite (grt+cpx+hb+pl) and HP amphibolite (grt+hbl+pl) may have formed by retrogression of eclogites during high-temperature decompression. Two types of garnet peridotite have been recognized, one forming from spinel peridotite at ca. 1150–1300 °C, 25.8–29.0 kbar, and another from plagioclase peridotite at 560 °C, 16.1 kbar.

The Variscan evolution of the pre-Mesozoic basement in the South Carpathians is similar to that in other segments of the European Variscides, including widespread HP metamorphism, in which PTt characteristics are specific to individual tectonostratigraphic units, the presence of diverse types of garnet peridotite, diachronous subduction and accretion, nappe assembly in pre-Westphalian time due to collision of Laurussia, Gondwana, and amalgamated terranes, and finally, rapid exhumation, cooling, and deposition of eroded debris in Westphalian to Permian sedimentary basins.  相似文献   


3.
We present a map that correlates tectonic units between Alps and western Turkey accompanied by a text providing access to literature data, explaining the concepts used for defining the mapped tectonic units, and first-order paleogeographic inferences. Along-strike similarities and differences of the Alpine-Eastern Mediterranean orogenic system are discussed. The map allows (1) for superimposing additional information, such as e.g., post-tectonic sedimentary basins, manifestations of magmatic activity, onto a coherent tectonic framework and (2) for outlining the major features of the Alpine-Eastern Mediterranean orogen. Dinarides-Hellenides, Anatolides and Taurides are orogens of opposite subduction polarity and direction of major transport with respect to Alps and Carpathians, and polarity switches across the Mid-Hungarian fault zone. The Dinarides-Hellenides-Taurides (and Apennines) consist of nappes detached from the Greater Adriatic continental margin during Cretaceous and Cenozoic orogeny. Internal units form composite nappes that passively carry ophiolites obducted in the latest Jurassic–earliest Cretaceous or during the Late Cretaceous on top of the Greater Adriatic margin successions. The ophiolites on top of composite nappes do not represent oceanic sutures zones, but root in the suture zones of Neotethys that formed after obduction. Suturing between Greater Adria and the northern and eastern Neotethys margin occupied by the Tisza and Dacia mega-units and the Pontides occurred in the latest Cretaceous along the Sava-İzmir-Ankara-Erzincan suture zones. The Rhodopian orogen is interpreted as a deep-crustal nappe stack formed in tandem with the Carpatho-Balkanides fold-thrust belt, now exposed in a giant core complex exhumed in late Eocene to Miocene times from below the Carpatho-Balkan orogen and the Circum-Rhodope unit. Its tectonic position is similar to that of the Sakarya unit of the Pontides. We infer that the Rhodope nappe stack formed due to north-directed thrusting. Both Rhodopes and Pontides are suspected to preserve the westernmost relics of the suture zone of Paleotethys.  相似文献   

4.
The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August–September 2001, with the objective of obtaining new information on the deep structure of the external Carpathians nappe system and the architecture of the Tertiary/Quaternary basins developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly WNW–ESE direction, from near the southeast Transylvanian Basin, across the mountainous south-eastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion of the DACIA-PLAN first arrival data. The results show that the data fairly accurately resolve the transition from sediment to crystalline basement beneath the Focsani Basin, where industry seismic data are available for correlation, at depths up to about 10 km. Beneath the external Carpathians nappes, apparent basement (material with velocities above 5.8 km/s) lies at depths as shallow as 3–4 km, which is less than previously surmised on the basis of geological observations. The first arrival travel-time data suggest that there is significant lateral structural heterogeneity on the apparent basement surface in this area, suggesting that the high velocity material may be involved in Carpathian thrusting.  相似文献   

5.
The interpretation of newly released commercial 2D reflection seismic data in the Kattegat area, Denmark, has provided us with a better understanding of the Palaeozoic tectonic processes along the Tornquist Fault Zone. A Base Palaeozoic time structure map, a Lower Palaeozoic TWT isopach map, a “true” Lower Palaeozoic TWT isopach map, an Upper Carboniferous/Lower Permian syn-rift TWT isopach map, a Top pre-Zechstein time structure map and a Zechstein combined TWT isopach and Palaeogeography map have been generated. The uniform Lower Palaeozoic sequence thickness in the Kattegat, both inside and outside the Tornquist Zone indicates only minor lateral movements if any, whereas the extensive Upper Silurian sequence, increasing in thickness to the north, indicates a relatively fast regional subsidence. The Base Palaeozoic time structure map and the Late Palaeozoic syn-rift isopach map show a clear Late Palaeozoic extension in the area. The syn-rift isopach map, in combination with the time-equivalent opening of the Skagerrak graben at right angles to the Tornquist Zone in the Kattegat, indicates that this extensional tectonic event had a dextral slip component. Measurements on internal extensional faults in the Tornquist Zone, give a minimum right-lateral displacement of 10.4 km. The footwall blocks were deeply eroded during the Early Permian rifting, and at Zechstein times the area became a peneplane. The Tornquist Zone was later exposed to several tectonic phases, where dextral slip played a role, indicated by the “push up” and “pull down” structures caused by restraining and releasing bends of the Børglum Fault. The dextral displacement along the Børglum Fault since the beginning of the Permian is in the order of 5–7 km based on the displacement of a Lower Palaeozoic local depocentre. Early Permian depocentres and faults, which gives a total amount of right-lateral displacement since the Early Palaeozoic in the order of 15–20 km. The continuously repeated tectonic episodes along the Tornquist Zone throughout most of the Phanerozoic, show that the zone was easily reactivated, implying deep-seated basement faults. The Tornquist Zone can be seen as a “buffer zone”, between continental blocks, whenever changes in the regional stress field are induced.  相似文献   

6.
The Tatricum, an upper crustal thrust sheet of the Central Western Carpathians, comprises pre-Alpine crystalline basement and a Late Paleozoic-Mesozoic sedimentary cover. The sedimentary record indicates gradual subsidence during the Triassic, Early Jurassic initial rifting, a Jurassic-Early Cretaceous extensional tectonic regime with episodic rifting events and thermal subsidence periods, and Middle Cretaceous overall flexural subsidence in front of the orogenic wedge prograding from the hinterland. Passive rifting led to the separation of the Central Carpathian realm from the North European Platform. A passive margin, rimmed by peripheral half-graben, was formed along the northern Tatric edge, facing the Vahic (South Penninic) oceanic domain. The passive versus active margin inversion occurred during the Senonian, when the Vahic ocean began to be consumed southwards below the Tatricum. It is argued that passive to active margin conversion is an integral part of the general shortening polarity of the Western Carpathians during the Mesozoic that lacks features of an independent Wilson cycle. An attempt is presented to explain all the crustal deformation by one principal driving force - the south-eastward slab pull generated by the subduction of the Meliatic (Triassic-Jurassic Tethys) oceanic lithosphere followed by the subcrustal subduction of the continental mantle lithosphere.  相似文献   

7.
Mineral exploration drillholes and geoelectric prospecting provide for the first time evidence for thrusting of the South Carpathian Paleozoic basement over northerly adjacent Middle Miocene sediments. Investigations were carried out in two locations, 30 km apart, along the northern margin of the Poiana Rusca Mountains, Romania, southwestern Carpathians. Drill holes in both locations encountered weakly consolidated Middle Miocene clay, sand, and fine gravel below Paleozoic low-grade metamorphic rocks. Intersections from various drill holes demonstrate the presence of low-angle thrusting. Kinematic indicators are so far lacking, but with a thrust direction oriented roughly normal to strike of the Poiana Rusca Mountains, minimum displacement is 1–1.4 km in northwestern or northern direction, respectively. Thrusting occurred most likely during the Late Miocene–Pliocene, whereafter Quaternary regional uplift dissected the thrust plane. In the tectonic framework of Neogene dextral translation of the Tisza–Dacia Block against the southerly adjacent Moesian Platform, transtension appears responsible for Middle Miocene basin formation along the northern margin of the Poiana Rusca region. Proceeding collision of the Tisza–Dacia Block with the East European Craton introduced stronger impingement of the Tisza–Dacia Block against the Moesian Platform, leading to a Late Miocene–Pliocene transpressional regime, in which the northern Poiana Rusca basement was thrust over its adjacent Middle Miocene sediments.  相似文献   

8.
Abstract

In the Oman mountains, a succession of sedimentary decollement nappes, the Hawasina nappes, is sandwiched between the Samail ophiolite nappe and its underlying melange and the “autochthonous” sequences of the Arabian platform. The sediments of the Hawasina nappes document the Mesozoic evolution of the northeastern Arabian continental margin and the adjacent Tethys Ocean. In earlier paleogeographic reconstructions, based on simple telescoping of the tectonic units, the upper Hawasina nappes represent the distal part and the lower nappes the proximal part of the margin. New stratigraphic data suggest a revision of the paleogeography and a more complex model for nappe emplacement in the central Oman mountains. The lower Hawasina nappes with their Jurassic and Cretaceous base of slope and basin sediments (Hamrat Duru, Wahrah) form the original cover of part of the upper Hawasina nappes. In the latter (Al Ayn, Haliw), Triassic pelagic sediments, locally overlain by massive sandstone successions are preserved. Complete Mesozoic sequences with pelagic Cenomanian sediments as youngest dated elements are found in the highest Hawasina units (Al Aridh and Oman Exotics). The stratigraphic data indicate polyphase thrusting in the central Oman mountains. Downward propagation of thrusting in front of the Samail is responsible for cutting the original stratigraphie sequence into a number of thrust-sheets, involving successively older and more external formations. This kind of thrust propagation eventually leads to the observed superposition of originally lower stratigraphie units onto their original cover. Regional deformation of the nappe contacts in post-nappe culminations (J. Akhdar, Saih Hatat) is related to ramp-flat-systems in the Arabian foreland.  相似文献   

9.
In Alpine Corsica, the major tectonic event during the late Cretaceous was the thrusting to the west of an ophiolitic nappe and its sedimentary cover upon the Variscan basement and its Mesozoic cover. A detailed field survey shows that the basal contact of the nappe corresponds to a pluri-kilometric scale shear zone. Thus gneissified basement slices have been tectonically emplaced in the ophiolitic nappe. The thrusting was responsible for small scale structures: foliation, lineation and folds, initiated in a HP/LT metamorphic context. The deformation analysis shows that the finite strain ellipsoid lies in the constriction field close to that for plane strain. Moreover occurrences of rotational criteria in the XZ planes (sigmoidal micas, asymmetric pressure shadows, quartz C-axes fabrics) are in agreement with shear from east to west. All structural data from microscopic to kilometric scales, of which the most widespread is a transverse stretching lineation, can be interpreted by a simple shear model involving ductile synmetamorphic deformation. At the plate tectonic scale the ophiolitic obduction is due to intraoceanic subduction blocked by underthrusting of continental crust beneath oceanic lithosphere.  相似文献   

10.
Abstract

The Upper Prealpine nappe of the Swiss and French Prealps consists of a composite stack of various tectonic slivers (Gets, Simme, Dranse and Sarine sub-nappes, from top to bottom). The structural superposition and stratigraphic content of the individual sub-nappes suggests a successive stacking at the South Penninic/Adriatic transition zone during the Late Cretaceous and Early Paleogene. The present paper deals with two aspects. (1) new data obtained from the Complexe de base Series of the Dranse sub-nappe which underlies the Helminthoid Sandstone Formation, and (2) the development of a geodynamic accretionary model for the Upper Prealpine nappe stacking.

The Complexe de base Series reveals a succession of black shales at the base, grading upward into variegated red/green and red shales which were deposited in an abyssal plain environment starved of clastic input. It is overlain by the Helminthoid Sandstone Formation. The combined analysis of planktic and agglutinated benthic foraminifera and comparisons with other Tethyan series suggest an Albian to Campanian age of the Complexe de base succession. Tectonic transport of the abyssal plain segment into a trench environment allowed for the stratigraphic superposition by the Helminthoid sandstone sequence. The present findings combine well with the general scheme of the Upper Prealpine nappe stack and several single results on parts of the nappe stack. We take that opportunity to present a comprehensive model for the tectono-sedimentary evolution of the Upper Prealpine nappe.

We suggest that Late Jurassic-Early Cretaceous asymmetric (?) extension at the South Penninic-Adriatic margin created an extensional alloehthon. Later during the mid-Cretaceous, the start of convergence drove the obduction of oceanic crust on the northern margin of the extensional allochthon. The resulting ophiolitic/continental source supplied clasts to the trench basin in front (Manche turbidite series), and the backarc basin (Mocausa Formation) and abyssal plain (Perrières turbidite series) to the South. During Middle to Late Coniacian the main Adriatic margin was thrusted over the obductionrelated mixed belt and established an incipient accretionary prism containing the former trench, backarc and abyssal plain basin fill series. During this stage the Gueyraz (melange) Complex formed, which separates the trench series from the retroarc and abyssal plain formations. On top of the incipient accretionary prism a forearc basin developed hosting the Hundsrück Formation. The frontal abyssal plain formation (Complexe de base) still received few turbiditic intercalations. From Campanian time on, the forearc basin was bypassed and deposition of the Helminthoid Sandstone Formation occurred on the Complexe de base succession. During the Maastrichtian the abyssal plain and trench fill succession (Dranse nappe) was accreted to the incipient wedge, and in front of a newly active buttress, the Gurnigel trench basin was established. Another accretionary event during latest Paleocene/earliest Eocene added parts of that trench series to the base of the wedge (Sarine nappe). During the Late Eocene the accretionary wedge and remaining trench fill series (Gurnigel nappe) were thrusted en-bloc over the Middle Penninic limestone nappes and partly overtook the latter. Continued shortening of the resulting nappe pile and out-of-sequence thrusting accomplished the overriding of the Middle Penninic units over the former South Penninic Gurnigel trench series (inversion of palaeogeographic domains).  相似文献   

11.
《Geodinamica Acta》2013,26(1-3):101-126
The olistostromes formed in Northern Carpathians during the different stages of the development of flysch basins, from rift trough post-rift, orogenic to postorogenic stage. They are known from the Cretaceous, Paleocene, Eocene, Oligocene and Early Miocene flysch deposits of main tectonic units. Those units are the Skole, Subsilesian, Silesian, Dukla and Magura nappes as well as the Pieniny Klippen Belt suture zone. The oldest olistoliths in the Northern Carpathians represent the Late Jurassic-Early Cretaceous rifting and post-rifting stage of the Northern Carpathians and origin of the proto-Silesian basin. They are known from the Upper Jurassic as well as Upper Jurassic-Lower Cretaceous formations. In the southern part of the Polish Northern Carpathians as well as in the adjacent part of Slovakia, the olistoliths are known in the Cretaceous- Paleocene flysch deposits of the Pieniny Klippen Belt Zlatne Unit and in Magura Nappe marking the second stage of the plate tectonic evolution - an early stage of the development of the accretionary prism. The most spectacular olistostromes have been found in the vicinity of Haligovce village in the Pieniny Klippen Belt and in Jaworki village in the border zone between the Magura Nappe and the Pieniny Klippen Belt. Olistoliths that originated during the second stage of the plate tectonic evolution occur also in the northern part of the Polish Carpathians, in the various Upper Cretaceous-Early Miocene flysch deposits within the Magura, Fore-Magura, Dukla, Silesian and Subsilesian nappes. The Fore-Magura and Silesian ridges were destroyed totally and are only interpreted from olistoliths and exotic pebbles in the Outer Carpathian flysch. Their destruction is related to the advance of the accretionary prism. This prism has obliquely overridden the ridges leading to the origin of the Menilite-Krosno basin.

In the final, postcollisional stage of the Northern Carpathian plate tectonic development, some olistoliths were deposited within the late Early Miocene molasse. These are known mainly from the subsurface sequences reached by numerous bore-holes in the western part of the Polish Carpathians as well as from outcrops in Poland and the Czech Republic.

The largest olistoliths (kilometers in size bodies of shallow-water rocks of Late Jurassic-Early Cretaceous age) are known from the Moravia region. The largest olistoliths in Poland were found in the vicinity of Andrychów and are known as Andrychów Klippen. The olistostromes bear witness to the processes of the destruction of the Northern Carpathian ridges. The ridge basement rocks, their Mesozoic platform cover, Paleogene deposits of the slope as well as older Cretaceous flysch deposits partly folded and thrust within the prism slid northward toward the basin, forming the olistostromes.  相似文献   

12.
柯坪塔格推覆构造几何学、运动学及其构造演化   总被引:29,自引:1,他引:29  
大量野外构造地质调查和深部构造解释表明柯坪塔格推覆构造由多组倒转复式背斜、复式箱状背斜构成的推覆体及其前缘逆冲断裂组成 ,由寒武系—第四系组成的推覆体由北向南逆—斜冲 ,平面上构成向南凸出的弧形推覆构造 ;普昌断裂由各不相连的逆冲斜冲断裂段组成 ,而不是完整的一条走滑断层 ,各推覆体前缘逆冲断裂与各推覆体的普昌断裂段共同构成统一的前缘逆冲斜冲逆冲断裂和推覆构造系统 ;普昌断裂段以西的推覆体具有向东抬升、向西倾覆的鼻状构造特征 ,普昌断裂段以东的推覆体具有向西抬升、向东倾覆的鼻状构造特征 ,普昌基底隆起带是巴楚隆起隐伏在柯坪塔格推覆构造之下的部分。各推覆体前缘断裂在深部均归并于统一的寒武系底部的滑脱面 ,其南浅北深 ,东浅西深 (普昌隆起带以西 )或西浅东深 (普昌隆起带以东 ) (6 10km ) ,埋深较大区发育多组滑脱面。柯坪塔格推覆构造的形成时期为晚第四纪 ,为现今活动的推覆构造系统。文中认为各推覆体向南西的倾覆端基底滑脱面和中新生界内部的滑脱面没有贯通 ,是未来 6级以上地震的发震构造部位。  相似文献   

13.
J. Golonka   《Tectonophysics》2004,381(1-4):235
Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic–Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus–proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny–Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic–Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western–central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous–Cenomanian. The latest Cretaceous–Paleogene was the time of the closure of the Ligurian–Pieniny Ocean. Adria–Alcapa terranes continued their northward movement during Eocene–Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians.During the Late Cretaceous, the Lesser Caucasus, Sanandaj–Sirjan and Makran plates were sutured to the Iranian–Afghanistan plates in the Caucasus–Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian–Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene–Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW–SE wrench faults. The remnants of Jurassic–Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.  相似文献   

14.
This paper presents a structural analysis of the external zone of Alpine Corsica, including the autochthonous domain and overlying external nappes (Santa Lucia and Balagne nappes). Two stages of nappe emplacement are identified occurring prior to and after the deposition of the Eocene sediments which were laid down upon first generation thrust contacts but are imbricated with their composite (continental and ophiolitic) basement by second generation thrusts. Five generations of structures with regional extent have been distinguished. However, the first generation has not been recognized within the visible part of the autochthon domain.Eoalpine first generation structures, restricted to allochthonous units, and Late Eocene to Early Oligocene second generation structures were nearly contemporaneous with the two stages of thrusting. The precise significance of E-W third generation structures is poorly understood. Broadly N-S fourth generation structures resulted from Oligocene compressive tectonics (folding and local backthrusting). Finally, fifth generation structures were generated during a Miocene extensional stage.These results are partly consistent with structural features previously reported in the southern and the northern outcrops of the Schistes lustrés, i.e. the main part of the allochthonous domain. A summary of a regional tectonic evolution is thus proposed for Alpine Corsica from Eoalpine obduction to Miocene extension.  相似文献   

15.
The nappe pile presently cropping out in the central sector of the Ligurian Alps, is represented by some principal groups of tectonic units. Starting from the foreland, the outer and lower, weakly metamorphic (up to 0.3 GPa) Briançonnais units support the high-pressure (up to 1.3 GPa) ensemble of inner Briançonnais nappes, in turn overridden by the Prepiedmont units, sourced from the European continental margin. Prepiedmont units form two superposed groups. The lower is composed only of a pre-Namurian basement (Alpine metamorphism up to 0.6 GPa); and the upper is mainly composed of a slightly metamorphic (greenschist facies) post-Namurian cover. At the top lie the high-pressure metamorphosed (up to 0.8 GPa in the sector here considered) ophiolitic units. The group of the non-metamorphic Helminthoid Flysch nappes (original stratigraphic cover of the ophiolitic units) has travelled the greatest distance and is presently mainly set onto the outer part of the chain. Only events up to the stacking of the nappe pile are discussed, disregarding late-stage deformation. As the examined sector is located at a considerable distance from the collisional zone, late processes did not change the overall order of superposition formerly acquired. The model proposes the development of two major, subhorizontal detachment surfaces. The first, shallower one confines at the base a very thin-skinned set of nappes, nearly totally made up of Prepiedmont sedimentary covers that are bounded at their top by the Helminthoid Flysch units. Both these groups underwent a mainly horizontal outwards transport. In contrast, the underlying Prepiedmont crust and the adjoining Briançonnais inner sector (separated by the second, deeper major detachment surface) were progressively dragged into the subduction zone under the ophiolitic units and duplexes were generated. Exhumation of the metamorphic units occurred along the subduction channel, as did stacking of the nappe pile.  相似文献   

16.
Magmatic rocks from the pre-Mesozoic basements of the Sambuco and Maggia nappes have been dated by U–Pb zircon ages with the LA-ICPMS technique. Several magmatic events have been identified in the Sambuco nappe. The mafic banded calc-alkaline suite of Scheggia is dated at 540 Ma, an age comparable to that of mafic rocks in the Austroalpine Silvretta nappe. The Sasso Nero peraluminous augengneiss has an age of 480–470 Ma, like many other “older orthogneisses” in Alpine basement units. It hosts a large proportion of inherited zircons, which were dated around 630 Ma, a Panafrican age indicating the Gondwanan affiliation of the Sambuco basement. The calc-alkaline Matorello pluton yielded ages around 300 Ma, similar to numerous Late Carboniferous intrusions in other basement units of the Lower Penninic (Monte Leone, Antigorio, Verampio) and Helvetic domains (Gotthard and other External Crystalline Massifs). Associated lamprophyric dykes are slightly younger (300–290 Ma), like similar dykes sampled in gneiss blocks included in the sedimentary cover of the underlying Antigorio nappe (290–285 Ma). The Cocco granodiorite and Rüscada leucogranite, both intruding the basement of the neighbouring Maggia nappe, yielded ages of ca. 300–310 Ma, identical within errors to the age of the Matorello pluton. They are significantly older than former age determinations. This age coincidence, coupled with remarkable petrologic similarities between the Cocco and Matorello granodiorites, strongly suggests paleogeographic proximity of the Sambuco and Maggia nappes in Late Carboniferous times. In recent publications these two nappes have been interpreted as belonging to distinct Mesozoic paleogeographic domains: “European” for Sambuco and “Briançonnais” for Maggia, separated by the “Valais” oceanic basin. In this case, the similarity of the Matorello and Cocco intrusions would demonstrate the absence of any significant transcurrent movement between these two continental domains. Alternatively, according to a more traditional view, Sambuco and Maggia might belong to a single large Alpine tectonic unit.  相似文献   

17.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   


18.
The northeastern South China Sea continental margin holds the key to understanding Late Mesozoic tectonics and evaluating hydrocarbon potentials in Mesozoic tectonic and stratigraphic structures offshore southeast China. With newly obtained and processed seismic data, and new drilling and logging data, we correlate regional Mesozoic stratigraphy and analyze major Mesozoic tectonic events and structures. In particular, we focus our study on the three major tectonic units in the area, the Chaoshan Depression, the Tainan Basin, and the Dongsha–Penghu Uplift, which are separated by basement high, thrust fold, and (or) faults. Stratigraphic correlations suggest a major phase of southeastward regression, spanning in time from the late Early Jurassic (180 Ma) to the Early Cretaceous (120 Ma). Seismic data reveal two major tectonic events, with the first one in the Late Jurassic to the Early Cretaceous, contemporary with the regression, and the second one in the Late Cretaceous. Regional magnetic anomaly map after the reduction to the pole clearly reveals the boundary between the Dongsha–Penghu Uplift and the Chaoshan–Tainan depositional system. The seismic and magnetic data also suggest that, while the Dongsha–Penghu Uplift has highly magnetized sources buried mostly in the upper crust at depths from about 2 km to about 20 km, the Chaoshan–Tainan depositional system has thick Mesozoic sediments of low magnetization.  相似文献   

19.
The eastern Central Alps consist of several Pennine nappes with different tectonometamorphic histories. The tectonically uppermost units (oceanic Avers Bündnerschiefer, continental Suretta and Tambo nappes, oceanic Vals Bündnerschiefer) show Cretaceous/early Tertiary W-directed thrusting with associated blueschist facies metamorphism related to subduction of the Pennine units beneath the Austroalpine continental crust. This event caused eclogite facies metamorphism in the underlying continental Adula nappe. The gross effect was crustal thickening. The tectonically lower, continental Simano nappe is devoid of any imprint from this event. In the course of continent-continent collision, high- T metamorphism and N-directed movements occurred. Both affected the whole nappe pile more or less continuously from amphibolite to greenschist facies conditions. Crustal thinning commenced during the regional temperature peak. A final phase is related to differential uplift under retrograde P–T conditions. Further thinning of the crust was accommodated by E- to NE-directed extensional deformation.  相似文献   

20.
The Gavarnie nappe is a feature of the Tertiary Pyrenean orogen and is shown to consist of at least two thrust sheets of Palaeozoic rocks which are overlain by a southward-dipping sequence of Cretaceous and Eocene sediments, showing folded thrust structures. The Gavarnie nappe covers a basement and Mesozoic cover-rock sequence which is exposed in the tectonic windows of La Larri and the Troumouse Cirque. Here, previously unrecognized thrusts involving basement were responsible for folding the overlying Gavarnie nappe. These basement-involved thrusts climb up section westwards giving a westward lowering of the Gavarnie thrust along strike. The structural evolution of the Gavarnie nappe in a region extending from Heas in France to the Valle de Pineta in Spain can be explained in terms of a piggy-back thrusting sequence. On a regional scale, thrust-tectonic models may be used to explain the double vergence of the Pyrenean chain where early southward-directed thrusting was responsible for structures in the South Pyrenean zone. A later northward-directed back thrusting event, or rotation of southward-directed thrust sheets by the stacking of lower thrust horses, can explain the steepness of structures in the axial zone and the northward-verging North Pyrenean thrust zone. Both models suggest that prior to the Pyrenean orogeny, some of the Hercynian structures in the axial zone were flatter lying, and have been rotated to their present steepness during the Pyrenean orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号