首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on the fluctuations in cosmic microwave background (CMB) radiation, whose accuracy is expected to increase in the immediate future, allow the cosmological recombination of atomic hydrogen and its interaction with the CMB radiation to be studied. Nonresonant effects play an important role in these recombination processes. We consider the quantum-mechanical foundations of the nonresonant processes and present our calculations for the differential two-photon decay rates of the 3s and 3d levels in the hydrogen atom. This article was submitted by the authors in English.  相似文献   

2.
Samples of spiral galaxies from two catalogues of 21 cm line observations and a catalogue of near-infrared observations of nearby galaxies have been used in conjunction with Infrared Astronomical Satellite data to study correlations involving MG, the dynamic mass of the galaxies, the luminosities in theH band (1.6Μm), the blue band and the far infrared bands and the mass of atomic hydrogen, it is found that both the blue and the far-IR luminosities which are indicators of star formation averaged over ∼3 × l09 and ∼107 years respectively, have a linear dependence onM G On the other hand, theH luminosity which is a measure of star formation averaged over the lifetime of galaxies, has a steeper power law dependence onM G. The correlations observed do not have significant dependence on the morophological type of the galaxies There is a poor correlation between the far-infrared luminosity and the mass of atomic hydrogen. The mass of atomic hydrogen has a dependence of the formM G. Because of the decrease in the mean mass for later morphological types and due to differences in power law dependences of luminosities in different bands onM G, the mean value of luminosity-to-mass ratio is a constant for blue and far-IR bands, decreases for theH band and the gas-to-mass ratio increases as morphological type increases.  相似文献   

3.
Raman scattering by atomic hydrogen converts the UV continuum around Lyβ into optical continuum around Hα, and the basic atomic physics has been discussed in several works on symbiotic stars. We propose that the same process may operate in active galactic nuclei (AGN) and calculate the linear polarization of the broad emission lines Raman-scattered by high-column neutral hydrogen component. The conversion efficiency of the Raman scattering process is discussed and the expected scattered flux is computed using the spectral energy distribution of an AGN given by a typical power law. The high-column H  i component in AGN is suggested by many observations, encompassing the radio through UV and X-ray ranges.   When neutral hydrogen component with a column density ∼1022 cm−2 is present around the active nucleus, it is found that the scattered Hα is characterized by a very broad width ∼20 000 km s−1 and that the strength of the polarized flux is comparable to that of the electron-scattered flux expected from a conventional unified model of narrow-line AGN. The width of the scattered flux is mainly determined by the column density of the neutral scatterers where the total scattering optical depth becomes of order unity. The asymmetry in the Raman scattering cross-section around Lyβ introduces red asymmetric polarized profiles around Hα. The effects of the blended Lyβ and O  vi 1034 doublet are also investigated.   We briefly discuss the spectropolarimetric observations performed on the Seyfert galaxy IRAS 110548-1131 and the narrow line radio galaxy Cyg A. Several predictions regarding the scattering by the high-column neutral hydrogen component in AGN are discussed.  相似文献   

4.
One of the key components controlling the chemical composition and climatology of Titan's atmosphere is the removal of reactive atomic hydrogen from the atmosphere. A proposed process of the removal of atomic hydrogen is the heterogeneous reaction with organic aerosol. In this study, we investigate the effect of heterogeneous reactions in Titan's atmospheric chemistry using new measurements of the heterogeneous reaction rate [Sekine, Y., Imanaka, H., Matsui, T., Khare, B.N., Bakes, E.L.O., McKay, C.P., Sugita, S., 2008. Icarus 194, 186-200] in a one-dimensional photochemical model. Our results indicate that 60-75% of the atomic hydrogen in the stratosphere and mesosphere are consumed by the heterogeneous reactions. This result implies that the heterogeneous reactions on the aerosol surface may predominantly remove atomic hydrogen in Titan's stratosphere and mesosphere. The results of our calculation also indicate that a low concentration of atomic hydrogen enhances the concentrations of unsaturated complex organics, such as C4H2 and phenyl radical, by more than two orders in magnitude around 400 km in altitude. Such an increase in unsaturated species may induce efficient haze production in Titan's mesosphere and upper stratosphere. These results imply a positive feedback mechanism in haze production in Titan's atmosphere. The increase in haze production would affect the chemical composition of the atmosphere, which might induce further haze production. Such a positive feedback could tend to dampen the loss and supply cycles of CH4 due to an episodic CH4 release into Titan's atmosphere.  相似文献   

5.
We present a procedure to make direct diagnostics of the physical conditions of the regions of formation of the atomic spectral lines in stellar atmospheres using the atomic line widths at half maximum and the number of lines visible of a given atomic series in the observed stellar spectra. This is accomplished using the theoretical widths at half maximum of the atomic lines induced by the broadening produced by thermal energy fluctuations and considering the maximum number of levels that exist in those atoms under the physical conditions of the given system. The procedure is easy to use in any application. As an example we apply the procedure to the observed Lyman lines of hydrogen in the ultraviolet of some stars.  相似文献   

6.
Recent R -matrix calculations of electron impact excitation rates for transitions among the 2s22p2, 2s2p3 and 2p4 levels of Fe  xxi are used to derive theoretical electron density ( N e) sensitive emission-line ratios involving 2s22p2–2s2p3 transitions in the ∼98–146Å wavelength range. A comparison of these with observations from the PLT tokamak plasma, for which the electron density has been independently determined, reveals generally very good agreement between theory and experiment, and in some instances removes discrepancies found previously. The observed Fe  xxi ratios for a solar flare, obtained with the OSO–5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.2 dex. In addition, the derived values of N e are similar to those estimated for the high-temperature regions of other solar flares. The good agreement between theory and observation, in particular for the tokamak spectra, provides experimental support for the accuracy of the present line-ratio calculations, and hence for the atomic data on which they are based.  相似文献   

7.
Active hydrogen maser is the main frequency standard for establishing and maintaining the time scale. It has the characteristics of high short-term stability and low phase noise. At present, it plays an increasingly important role in the international atomic time (TAI) and various local time scales. Firstly, in combination with the internal state parameters of an active hydrogen maser, the correlation between the internal state parameters and the comparison data of a hydrogen maser is analyzed, and a method for the performance monitoring of a hydrogen maser is proposed. Secondly, according to the characteristics of hydrogen maser performance, a method for evaluating the performance of a hydrogen maser is given. The hydrogen maser performance includes mainly two aspects, namely the frequency stability and predictability. The performances of two types of active hydrogen masers (CH1-75 and MHM-2010) are evaluated by this method. The correlation analysis of the atomic clock state parameters and comparison data shows that the state parameter monitoring can effectively predict the variation of the hydrogen maser performance. The evaluation results of atomic clock frequency stability and predictability show that the atomic clock with a higher medium-and-long term frequency stability has a better predictability. There are two methods for the predictability evaluation, one is based on the data published by BIPM (Bureau International des Poids et Measures), and another one is based on the quadratic model. Both methods are consistent with the weights published by BIPM. Therefore, the two methods can be used as a quantitative method to evaluate the predictability of a hydrogen maser.  相似文献   

8.
The distribution of atomic hydrogen in the thermosphere and exosphere is computed taking into account the upward flow which balances the escape flux. Because of the upward flow the number-density gradient is much steeper than it would be in a static atmosphere. Attention is drawn to the fact that the ratio of the amount of hydrogen above the 100 or 110km levels to the amount of hydrogen above the 200 or 300 km levels is a sensitive measure of the temperature of the exosphere. The evidence on the absolute abundance of atomic hydrogen is examined. It is concluded that the number density at the 120km level is probably about 5 × 105/cm3. The Ly. absorption line at this level is beyond the linear part of the curve of growth.

Consideration is also given to the steady-state distributions of O+ and H+ ions. In the lower part of the exosphere the number density of O+ ions falls with increase in altitude (the associated scale height being twice that of the O atoms) and the number density of H+ ions rises at the same rate (as was first pointed out by Dungey). The altitude at which the number densities of O+ and H+ ions become equal is calculated on various assumptions regarding the temperature and hydrogen content of the exosphere. It is found to be about 1200 km when the temperature is 1250° K and the hydrogen content corresponds to the number density cited near the end of the preceding paragraph. The gradient of the predicted electrondensity distribution at several Earth radii is much less than that deduced from whistler studies.

The passage from charge transfer to diffusive equilibrium is discussed in an Appendix.  相似文献   


9.
上海天文台时间频率研究室以原有被动型氢钟物理部分为基础,开展了脉冲微波式氢原子钟的研究。设计电路产生2个相干微波脉冲,连续激励氢原子跃迁,模拟双腔共振,使氢原子发生Ramsey干涉,压缩氢原子跃迁谱线宽度,以期提高氢原子钟短期稳定度指标。具体做法为:用DDS产生扫频电路,混频生成1.420 405 GHz激励信号后,再用CPLD产生脉冲时序控制数字衰减器,将激励信号衰减为脉冲形式,激励氢原子发生Ramsey干涉,导出微波信号并进行相关处理就可以产生Ramsey条纹。已观测到Ramsey干涉条纹,其中心峰宽度为1.2 Hz,相比传统被动型氢原子钟压缩了60%。  相似文献   

10.
We have calculated the intensities of the subordinate hydrogen lines formed during the recombination epoch at redshifts 800?z?1600. We show that an allowance for the angular momentum splitting of hydrogen atomic energy levels and the dipole transition selection rules can reveal absorption features in the cosmic microwave background recombination spectrum in the submillimeter wavelength range.  相似文献   

11.
Observations of the Europa environment using the Cassini UltraViolet Imaging Spectrograph (UVIS) show the presence of an extended atomic oxygen atmosphere in addition to the bound molecular oxygen atmosphere first detected by Hubble Space Telescope in 1994 [D.T. Hall, D.F. Strobel, P.D. Feldman, M.A. McGrath, H.A. Weaver, 1995, Detection of an oxygen atmosphere on Jupiter's moon Europa, Nature 373, 677-679]. The atomic oxygen measurement provides a direct constraint on the sputtering and loss of Europa's water ice surface and the interaction of Europa's atmosphere with Jupiter's magnetosphere. We derive a loss rate for O2 based on the emission rate of the OI 1356 Å multiplet. UVIS detected substantial variability in the oxygen emission from Europa's oxygen atmosphere that we attribute to the viewing geometry. B.H. Mauk, D.G. Mitchell, S.M. Krimigis, E.C. Roelof, C.P. Paranicas [2003, Energetic neutral atoms from a trans-Europa gas torus at Jupiter, Nature 421, 920-922] inferred the presence of a torus of neutral gas at Europa's orbit based on Cassini's energetic neutral atom (ENA) image of the Jupiter system acquired with the Magnetospheric Imaging Instrument (MIMI), with the most likely torus constituents being hydrogen and oxygen species sputtered from Europa. Cassini UVIS data rule out O and O2 as the possible torus species reported by Mauk et al. however, unless the torus density is so low that it is undetectable by UVIS (less than 8 atoms / cm3). The UVIS observations indicate the presence of atomic hydrogen and possibly other species, but a full analysis is deferred to a following paper. The hydrogen in the present observations shows a local-time asymmetry and complex spatial distribution.  相似文献   

12.
Several satellite experiments have measured the solar Lyman-α line, either in scattering from upper atmospheric atomic hydrogen (the Lyman-α airglow) or directly at line center (which determines the hydrogen column density along the line of sight). Recent analyses of data from the above experiments consistently reveal the presence of an atomic hydrogen depletion at high latitudes. In situ determinations of hydrogen at lower altitude show no evidence of such behaviour. This has led us to postulate two mechanisms which may be more effective in reducing the high-latitude density at the high altitudes of the exospheric measurements (500–2000 km). The first is the polar wind loss of protons, which depletes atomic hydrogen through a charge exchange reaction. The second is a high-latitude magnetospheric heating of protons, followed by charge exchange. Opposing the above loss mechanisms are the influences of ballistic lateral flow and mean meriodional winds. We have shown by means of a three-dimensional exospheric transport model that none of the above mechanisms can reconcile the disparate results in the two altitude regimes, nor can they provide the large outward hydrogen fluxes and the correct seasonal variations observed at high latitudes.  相似文献   

13.
A general Monte Carlo relaxation method has been formulated for the computation of physically self-consistent model stellar atmospheres. The local physical state is obtained by solving simultaneously the equations of statistical equilibrium for the atomic and ionic level populations, the kinetic energy balance equation for the electron gas to obtain the electron temperature, and the equation of radiative transfer. Anisotropic Thomson scattering is included in the equation of transfer and radiation pressure effects are included in the hydrostatic equation. The constraints of hydrostatic and radiative equilibrium are enforced. Local thermodynamic equilibrium (L.T.E.) is assumed as a boundary condition deep in the atmosphere. Elsewhere in the atmosphere L.T.E. is not assumed.The statistical equilibrium equations are solved with no assumptions made concerning detailed balance for the bound-bound radiative processes. The source function is formulated in microscopic detail. All atomic processes contributing to the absorption and emission of radiation are included. The kinetic energy balance equation for the electron gas is formulated in detail. All atomic processes by which kinetic energy is gained and lost by the electron gas are included.The method has been applied to the computation of a model atmosphere for a pure hydrogen early-type star. An idealized model of the hydrogen atom with five bound levels and the continuum was adopted. The results of the trial calculation are discussed with reference to stability, accuracy, and convergence of the solution.Contribution No. 385 from the Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

14.
P. Hedelt  Y. Ito  L. Esposito 《Icarus》2010,210(1):424-435
Based on measurements performed by the Hydrogen Deuterium Absorption Cell (HDAC) aboard the Cassini orbiter, Titan’s atomic hydrogen exosphere is investigated. Data obtained during the T9 encounter are used to infer the distribution of atomic hydrogen throughout Titan’s exosphere, as well as the exospheric temperature.The measurements performed during the flyby are modeled by performing Monte Carlo radiative transfer calculations of solar Lyman-α radiation, which is resonantly scattered on atomic hydrogen in Titan’s exosphere. Two different atomic hydrogen distribution models are applied to determine the best fitting density profile. One model is a static model that uses the Chamberlain formalism to calculate the distribution of atomic hydrogen throughout the exosphere, whereas the second model is a Particle model, which can also be applied to non-Maxwellian velocity distributions.The density distributions provided by both models are able to fit the measurements although both models differ at the exobase: best fitting exobase atomic hydrogen densities of nH = (1.5 ± 0.5) × 104 cm−3 and nH = (7 ± 1) × 104 cm−3 were found using the density distribution provided by both models, respectively. This is based on the fact that during the encounter, HDAC was sensitive to altitudes above about 3000 km, hence well above the exobase at about 1500 km. Above 3000 km, both models produce densities which are comparable, when taking into account the measurement uncertainty.The inferred exobase density using the Chamberlain profile is a factor of about 2.6 lower than the density obtained from Voyager 1 measurements and much lower than the values inferred from current photochemical models. However, when taking into account the higher solar activity during the Voyager flyby, this is consistent with the Voyager measurements. When using the density profile provided by the particle model, the best fitting exobase density is in perfect agreement with the densities inferred by current photochemical models.Furthermore, a best fitting exospheric temperature of atomic hydrogen in the range of TH = (150-175) ± 25 K was obtained when assuming an isothermal exosphere for the calculations. The required exospheric temperature depends on the density distribution chosen. This result is within the temperature range determined by different instruments aboard Cassini. The inferred temperature is close to the critical temperature for atomic hydrogen, above which it can escape hydrodynamically after it diffused through the heavier background gas.  相似文献   

15.
Mariner 9 ultraviolet spectrometer observations show the Mars airglow consists principally of emissions that arise from the interaction of solar ultraviolet radiation with carbon dioxide, the principal constituent of the Mars atmosphere. Two minor constituents, atomic hydrogen and atomic oxygen, also produce airglow emissions. The airglow measurements show that ionized carbon dioxide is only a minor constituent of the ionosphere. Using the airglow measurements of atomic oxygen, it is possible to infer that the major ion is ionized molecular oxygen. The escape rate of atomic hydrogen measured by Mariner 9 is approximately the same as that measured two years earlier by Mariner 6 and 7. If the current escape rate has been operating for 4.5 billion years and if water vapor is the ultimate source, an amount of oxygen has been generated that is far in excess of that observed at present. Mariner 9 observations of Mars Lyman alpha emission over a period of 120 days show variations of 20%.  相似文献   

16.
姜萌 《天文学报》2024,65(1):10
在这篇文章中, 提出了一种基于改进的指数平滑和Vondrak_Cepek联合平滑的氢铯综合时间尺度产生方法. 以最小误差方法为理论基础, 动态估计氢原子钟频率漂移参数, 提升氢原子钟钟差预测准确度; 基于改进的二次指数平滑产生氢原子钟组时间尺度、加权平均方法产生铯原子钟时间尺度, 同时设计Vondrak_Cepek滤波器以结合两类时间尺度长短期稳定度优势, 提升综合时间尺度性能. 实验结果表明, 所提方法产生的氢铯综合时间尺度时稳可达1.60x10-15,天稳可达3x10-15,优于ALGOS、AT1和Kalman滤波3种经典方法产生的时间 尺度性能.  相似文献   

17.
丁利  刘当波  尤峻汉  陈磊 《天文学报》2007,48(2):130-138
类星体与赛弗特Ⅰ型星系中观测到很陡的巴尔末减缩,与传统的理论预言相矛盾.这是一个长期没有解决的困惑.如果活动星系核的宽的氢线是产生于“Cerenkov线状辐射”机制,这一难题就可解决.搜集了过去已发表的近百个有巴尔末减缩观测结果的类星体与赛弗特星系源,并采用“Cerenkov线状辐射”这一新型辐射机制的线强比公式完成了对观测的巴尔末减缩的理论计算.理论与观测符合很好,这是活动星系核宽的氢发射线主要起源于“Cerenkov线状辐射”机制的一个重要证据.如果这一结论最终获得肯定,将大大改变人们对活动星系核物理的认识.  相似文献   

18.
《Icarus》1987,69(3):532-549
We show that mass fractionation occurs during the course of hydrodynamic escape of gases from the atmosphere of an inner planet. Light gases escape more readily than heavy gases. The resultant fractionation as a function of mass yields a linear or concave downward plot in a graph of logarithm of remaining inventory against atomic mass. An episode of hydrodynamic escape early in the history of Mars could have resulted in the mass-dependent depletion of the noble gases observed in the Martian atmosphere, if Mars was initially hydrogen rich. Similarly, a hydrodynamic escape episode early in Earth's history could have yielded a mass-dependent fractionation of the xenon isotopes. The required hydrodynamic escape fluxes and total amounts of hydrogen lost from the planets in these episodes are large, but not impossibly so. The theory of the mass fractionation process is simple, but more work will be needed to put together an internally consistent scenario that reconciles a range of data from different planets.  相似文献   

19.
In recent years it has become evident that large differences can exist between model results of grain-surface chemistry obtained from a rate equation approach and from a Monte Carlo technique. This dichotomy has led to the development of a modified rate equation method, in which a key element is the artificial slowing down of the diffusion rate of surface hydrogen atoms. Recent laboratory research into the surface diffusion rate of atomic hydrogen suggests that atomic hydrogen moves more slowly on grains than heretofore assumed. This research appears to lessen the need for modifications to the rate equation method. Based on the new laboratory work, we have developed appropriate models of gas-phase and grain-surface chemistry in quiescent dense cloud cores to examine the chemical effects of slowing down the rate at which atomic H can scan over dust surfaces. Furthermore, we have investigated the effect of slowing down the rate at which all species can move over grain surfaces.  相似文献   

20.
中国计划于2025年左右建立月球轨道VLBI (Very Long Baseline Interferometer)测站,将会搭载被动型星载氢钟作为时间频率标准.由于是首次在VLBI观测中使用星载氢钟,需要研究和验证其可行性.因此,利用星载氢钟作为频率基准开展了VLBI观测.实验时,分别使用主动型地面氢钟和被动型星载氢钟作为频率基准,利用上海天文台佘山25 m射电望远镜和其他测站对我国火星探测器天问一号进行了交替VLBI观测.数据处理分析结果表明,基于地面氢钟与星载氢钟的VLBI残余群时延标准差均在0.5 ns以内,表明星载氢钟可满足深空探测VLBI测定轨的精度要求,验证了其作为月球VLBI测站频率基准的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号