首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper estimates CO2 fluxes in a municipal site for final disposal of solid waste, located in Gualeguaychu, Argentina. Estimations were made using the accumulation chamber methods, which had been calibrated previously in laboratory. CO2 fluxes ranged from 31 to 331 g m−2 day−1. Three different populations were identified: background soil gases averaging 46 g m−2 day−1, intermediate anomalous values averaging 110 g m−2 day−1 and high anomalous values averaging 270 g m−2 day−1. Gas samples to a depth of 20 cm were also taken. Gas fractions, XCO2 < 0.1, XCH4 < 0.01, XN2 ~0.71 and XO2 ~0.21, δ13C of CO2 (−34 to −18‰), as well as age of waste emplacement, suggest that the study site may be at the final stage of aerobic biodegradation. In a first approach, and following the downstream direction of groundwater flow, alkalinity and δ13C of dissolved inorganic carbon (−15 to 4‰) were observed to increase when groundwater passed through the disposal site. This suggests that the CO2 generated by waste biodegradation dissolves or that dissolved organic matter appears as a result of leachate degradation.  相似文献   

2.
A sulfur hexafluoride (SF6) tracer release experiment was conducted in the Stockton Deep Water Ship Channel (DWSC) to quantify mixing and transport rates. SF6 was injected in the San Joaquin River upstream of the DWSC and mapped for 8 days. From the temporal change in SF6 distributions, the longitudinal dispersion coefficient (K x ) was determined to be 32.7 ± 3.6 m2 s−1 and the net velocity was 1.75 ± 0.03 km day−1. Based on the decrease in SF6 inventory during the experiment, the pulsed residence time for waters in the DWSC was estimated at ∼17 days. Within the DWSC from Stockton downstream to Turner Cut, dissolved oxygen concentrations maintained a steady state value of 4 mg l−1. These values are below water quality objectives for the time of year. The low flow rates observed in the DWSC and the inability of oxygen-rich waters from downstream to mix into the DWSC upstream of Turner Cut contribute to the low dissolved oxygen concentration.  相似文献   

3.
Trimethylbenzene (TMB), as a constituent of gasoline, is often expected to be used as a conservative tracer in anaerobic BTEX-contaminated groundwater site to correct for attenuation due to dispersion, dilution and sorption along a flow path. To evaluate the suitability of using TMB as a tracer and to better understand biodegradability of TMB in contaminated groundwater by gasoline under anaerobic conditions, laboratory microcosms were conducted with mixed nitrate/iron/sulfate electron-acceptor amendments, using aquifer materials collected from Canadian Forces Base (CFB), Borden, Ontario, Canada. The results showed that under denitrifying conditions, biodegradation of 1,3,5-TMB, 1,2,4-TMB and 1,2,3-TMB were relatively slow and after 204 days of incubation approximately 27, 24, and 16% of the initial concentrations, respectively, were degraded in the microcosms. Under sulfate-reducing conditions, TMB isomers were recalcitrant. In contrast, significant biodegradation of TMB was observed under iron-reducing conditions. 1,3,5-TMB, 1,2,4-TMB and 1,2,3-TMB were degraded to 44, 47, and 24% of initial concentrations with first-order biodegradation rate constants of 0.003, 0.006 and 0.013 d−1, respectively. This study indicates that TMB biodegradation is insignificant under nitrate and sulfate-reducing conditions but significant under iron-reducing conditions. Therefore, the use of TMB as a tracer for interpreting removal of other biodegradable gasoline constituents such as BTEX requires caution, especially in the presence of iron-reducing conditions.  相似文献   

4.
We present results from low-temperature heat capacity measurements of spinels along the solid solution between MgAl2O4 and MgCr2O4. The data also include new low-temperature heat capacity measurements for MgAl2O4 spinel. Heat capacities were measured between 1.5 and 300 K, and thermochemical functions were derived from the results. No heat capacity anomaly was observed for MgAl2O4 spinel; however, we observe a low-temperature heat capacity anomaly for Cr-bearing spinels at temperatures below 15 K. From our data we calculate standard entropies (298.15 K) for Mg(Cr,Al)2O4 spinels. We suggest a standard entropy for MgAl2O4 of 80.9 ± 0.6 J mol−1 K−1. For the solid solution between MgAl2O4 and MgCr2O4, we observe a linear increase of the standard entropies from 80.9 J mol−1 K−1 for MgAl2O4 to 118.3 J mol−1 K−1 for MgCr2O4.  相似文献   

5.
Single-crystal electron paramagnetic resonance (EPR) spectra of a natural citrine quartz without any artificial irradiation, measured at W-band frequencies (∼94 GHz) and temperatures of 77, 110 and 298 K, allow better characterization of three previously-reported Centers (#6, #7 and B) and discovery of three new defects (B′, C′ and G′). The W-band EPR spectra reveal that Centers #6 and #7 do not reside on twofold symmetry axes, contrary to results from a previous X-band EPR study. The W-band spectra also show that the previously reported Center B is a mixture of two defects (B and B′) with similar g matrices but different-sized 27Al hyperfine structures. Center C′ has similar principal g values to the previously reported Center C but is distinct from the latter by a larger 27Al hyperfine structure with splittings from 0.10 to 0.22 mT. Also, Center G′ has a similar g matrix to the previously reported Center G but a different 27Al hyperfine structure with splittings from 0.41 to 0.53 mT. These spin-Hamiltonian parameters, together with observed thermal properties and microwave-power dependence, suggest that Centers #6 and #7 probably represent O23− type defects. Centers B and B′ are probably superoxide radicals (O2) with the unpaired spin localized on the same pair of oxygen atoms around a missing Si atom but linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Similarly, Centers G and G′ are most likely superoxide radicals with the unpaired spin localized on another pair of oxygen atoms around a missing Si atom and linked to a substitutional Al3+ ion each at different neighboring tetrahedral sites. Center C′ is probably an ozonide radical associated with a missing Si atom and linked to a substitutional Al3+ ion at the neighboring tetrahedral site. This study exemplifies the value of  high-frequency EPR for discrimination of  similar defect centers and determination of  small local structural distortions that are often difficult to resolve in conventional  X- and Q-band EPR studies.  相似文献   

6.
As a part of the MONTBLEX-90 observational programme, Kytoon and Doppler sodar observations were taken at Kharagpur. These data are analysed to study the turbulent characteristics of the atmospheric boundary layer in terms of stability, temperature structure function (C T 2 ) and velocity structure function (C v 2 ).C T 2 follows aZ −4/3 law on most of the days, whereas the variation ofC V 2 is not systematic.C V 2 andC T 2 values are found to vary between 10−5−10−1 m4/3s−2 and 10−5−10−2°C2 m−2/3 respectively.  相似文献   

7.
Electrical conductivity of saturated soil extracts (ECe) in three reclaimed tideland (RTL) soils on the west coast of Korea decreased with time since reclamation, indicating natural desalinization through leaching of salts by precipitation water. Soil N concentration increased with decreasing ECe. With the increase in soil N concentration, the δ15N decreased, likely caused by the input of 15N-depleted N sources. As N2-fixing plant species were found in the oldest RTL, atmospheric N2 fixation likely contributed to the increase in soil N concentration in the oldest RTL. Negative δ15N (−7.1 to −2.0‰) of total inorganic N (NH4 ++NO3 ) and published data on N deposition near the study area indicate that atmospheric N deposition might be another source of N in the RTLs. Meanwhile, the consistently negative δ15N of soil NO3 excluded N input from chemical fertilizer through groundwater flow as a potential N source, since NO3 in groundwater generally have a positive δ15N. The patterns of δ15N of NH4 + (+2.3 to +5.1‰) and NO3 (−9.2 to −5.0‰) suggested that nitrification was an active process that caused 15N enrichment in NH4 + but denitrification was probably minimal which would otherwise have caused 15N enrichment in NO3 . A quantitative approach on N budget would provide a better understanding of soil N dynamics in the studied RTLs.  相似文献   

8.
Accurate measurements to assess the influence of soil moisture on CO2 flux requires the absolute estimates of soil CO2 flux. Thus, it was constructed a calibration system where CO2 with fixed concentration flowed through the different porous material. Previous to measurement, in order to verify the performance and reliability of a closed dynamic chamber, different discontinuous air-mixing rates and times were tested. The CO2 flux was estimated through sequential lectures and the best fit for flux measurements was obtained taking short readings every 3 min, during a total time of 12 min (R 2 = 0.99). The best mixing rate was attained for 250 mL min−1, allowing 25 s of mixing previous to CO2 extraction for an infrared gas analyzer. The deviation of the measured values for dry sand from the reference CO2 flux (0.097 and 0.071 g m−2 min−1) was 5 and 7%. On dry sandy loam soil (SLS) the deviation was 2%. The measured fluxes decreased 73 and 22% with content moisture of 20 and 10% (sand), and 78% with content moisture of 31% (SLS). This work allowed to estimate how much the measured emission rates deviate from the true ones for the specified chamber and sampling conditions.  相似文献   

9.
The low-temperature heat capacity (C p ) of KAlSi3O8 with a hollandite structure was measured over the range of 5–303 K with a physical properties measurement system. The standard entropy of KAlSi3O8 hollandite is 166.2±0.2 J mol−1 K−1, including an 18.7 J mol−1 K−1 contribution from the configurational entropy due to disorder of Al and Si in the octahedral sites. The entropy of K2Si4O9 with a wadeite structure (Si-wadeite) was also estimated to facilitate calculation of phase equilibria in the system K2O–Al2O3–SiO2. The calculated phase equilibria obtained using Perple_x are in general agreement with experimental studies. Calculated phase relations in the system K2O–Al2O3–SiO2 confirm a substantial stability field for kyanite–stishovite/coesite–Si-wadeite intervening between KAlSi3O8 hollandite and sanidine. The upper stability of kyanite is bounded by the reaction kyanite (Al2SiO5) = corundum (Al2O3) + stishovite (SiO2), which is located at 13–14 GPa for 1,100–1,400 K. The entropy and enthalpy of formation for K-cymrite (KAlSi3O8·H2O) were modified to better fit global best-fit compilations of thermodynamic data and experimental studies. Thermodynamic calculations were undertaken on the reaction of K-cymrite to KAlSi3O8 hollandite + H2O, which is located at 8.3–10.0 GPa for the temperature range 800–1,600 K, well inside the stability field of stishovite. The reaction of muscovite to KAlSi3O8 hollandite + corundum + H2O is placed at 10.0–10.6 GPa for the temperature range 900–1,500 K, in reasonable agreement with some but not all experiments on this reaction.  相似文献   

10.
Radiocarbon analyses were carried out in the annual bands of a 40 year old coral collected from the Gulf of Kutch (22.6°N, 70°E) in the northern Arabian Sea and in the annual rings of a teak tree from Thane (19°14′N, 73°24′E) near Bombay. These measurements were made in order to obtain the rates of air-sea exchange of CO2 and the advective mixing of water in the Gulf of Kutch. The Δ14C peak in the Thane tree occurs in the year 1964, with a value of ∼630‰, significantly lower than that of the mean atmospheric Δ14C of the northern hemisphere (∼ 1000‰). The radiocarbon time series of the coral was modelled considering the supply of carbon and radiocarbon to the gulf through air-sea exchange and advective water transport from the open Arabian Sea. A reasonable fit for the coral data was obtained with an air-sea CO2 exchange rate of 11–12 mol m−2 yr−1, and an advective velocity of 28 m yr−1 between the Arabian Sea and the Gulf of Kutch; this was based on a model generated time series for radiocarbon in the Arabian Sea. The deduced velocity (∼ 28 m yr−1) of the advective transport of water between the gulf and the Arabian Sea is much lower than the surface tidal current velocity in this region, but can be understood in terms of net fluxes of carbon and radiocarbon to the gulf to match the observed coral Δ14C time series.  相似文献   

11.
Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m 2 h 1, respectively, in 2004, and 898.59 and 2,154.17 mg m 2 h 1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m 2 h 1 and 0.72 and 1.88 mg m 2 h 1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 + CH4 + N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.  相似文献   

12.
The synthetic amphibole Na0.95(Li0.95Mg1.05)Mg5Si8O22(OH)2 was studied in situ at high-T, using IR OH-stretching spectroscopy and synchrotron X-ray powder diffraction. At room-T the sample has P21 /m symmetry, as shown by the FTIR spectrum. It shows in the OH region two well-defined and intense absorptions at 3,748 and 3,712 cm−1, respectively, and two minor bands at 3,667 and 3,687 cm−1. The main bands are assigned to the two independent O–H groups in the primitive structure. The two minor bands evidencing the presence of small amount of vacant A-site (A0.05). With increasing T, these bands shift continuously and merge into a unique absorption at high temperature. A change as a function of increasing T is revealed by the evolution of the refined unit-cell parameters, whose trend shows a transition to C2/m at about 320–330°C. The spontaneous scalar strain, fitted with a tricritical 2–6 Landau potential, gives a T c of 325(10)°C (β parameter = 0.27). Comparison with the second-order P21 /mC2/m phase transition at 255°C for synthetic amphibole ANa0.8B(Na0.8Mg1.2)CMg5Si8O22(OH)2 indicates that the substitution of Na with Li at the B-sites strongly affects the thermodynamic character and the T c of the phase transition. The comparison of LNMSH amphiboles with cummingtonitic ones shows that the high-T thermodynamic behaviour is affected by A-site occupancy.  相似文献   

13.
A long-term elution experiment to study the saturated transport of pre-accumulated fertilizers by-products, was conducted within a large tank (4 × 8 × 1.4 m) equipped with 26 standard piezometers. Sandy sediments (35 m3), used to fill the tank, were excavated from an unconfined alluvial aquifer near Ferrara (Northern Italy); the field site was connected to a pit lake located in a former agricultural field. To evaluate spatial heterogeneity, the tank’s filling material was characterized via slug tests and grain-size distribution analysis. The investigated sediments were characterized by a large spectrum of textures and a heterogeneous hydraulic conductivity (k) field. Initial tank pore water composition exhibited high concentration of nitrate (NO3 ) sulfate (SO4 2−) calcium (Ca2+), and magnesium (Mg2+), due to fertilizer leaching from the top soil in the field site. The initial spatial distribution of NO3 and SO4 2− was heterogeneous and not related to the finer grain-size content (<63 μm). The tank’s material was flushed with purified tap water for 800 days in steady-state conditions; out flowing water was regularly sampled to monitor the migration rate of fertilizer by-products. Complete removal of NO3 and SO4 2− took 500 and 600 days, respectively. Results emphasized organic substrate availability and spatial heterogeneities as the most important constraints to denitrification and nitrogen removal, which increase the time required to achieve remediation targets. Finally, the obtained clean-up time was compared with a previous column experiment filled with the same sediments.  相似文献   

14.
Rising atmospheric pCO2 and ocean acidification originating from human activities could result in increased dissolution of metastable carbonate minerals in shallow-water marine sediments. In the present study, in situ dissolution of carbonate sedimentary particles in Devil’s Hole, Bermuda, was observed during summer when thermally driven density stratification restricted mixing between the bottom water and the surface mixed layer and microbial decomposition of organic matter in the subthermocline layer produced pCO2 levels similar to or higher than those levels anticipated by the end of the 21st century. Trends in both seawater chemistry and the composition of sediments in Devil’s Hole indicate that Mg-calcite minerals are subject to selective dissolution under conditions of elevated pCO2. The derived rates of dissolution based on observed changes in excess alkalinity and estimates of vertical eddy diffusion ranged from 0.2 mmol to 0.8 mmol CaCO3 m−2 h−1. On a yearly basis, this range corresponds to 175–701 g CaCO3 m−2 year−1; the latter rate is close to 50% of the estimate of the current average global coral reef calcification rate of about 1,500 g CaCO3 m−2 year−1. Considering a reduction in marine calcification of 40% by the year 2100, or 90% by 2300, as a result of surface ocean acidification, the combination of high rates of carbonate dissolution and reduced rates of calcification implies that coral reefs and other carbonate sediment environments within the 21st and following centuries could be subject to a net loss in carbonate material as a result of increasing pCO2 arising from burning of fossil fuels.  相似文献   

15.
We report here a single-crystal polarized-light study of stoppaniite, ideally (Fe,Al,Mg)4(Be6Si12O36)(H2O)2(Na,□), from Capranica (Viterbo). Polarized-light FTIR spectra were collected on an oriented (hk0) section, doubly polished to 15 μm. The spectrum shows two main bands at 3,660 and 3,595 cm−1; the former is strongly polarized for E c, while the latter is polarized for E //c. A sharp and very intense band at 1,620 cm−1, plus minor features at 4,000 and 3,228 cm−1 are also polarized for E //c. On the basis of literature data and considering the pleochroic behavior of the absorptions, the 3,660 cm−1 band is assigned to the ν3 stretching mode and the 1,620 cm−1 (associated with an overtone 2*ν2 at 3,230 cm−1) band to the ν2 bending mode of “type II” water molecules within the structural channels of the studied beryl. The sharp band at 3,595 cm−1 is not associated with a corresponding ν2 bending mode; thus it is assigned to the stretching vibration of O–H groups in the sample. The minor 4,000 cm−1 feature can be assigned to the combination of the O–H bond parallel to c with a low-frequency metal-oxygen mode such as the Na–O stretching mode. The present results suggest that the interpretation of the FTIR spectrum of Na-rich beryl needs to be carefully reconsidered.  相似文献   

16.
A multi-anvil device was used to synthesize 24 mg of pure γ-Fe2SiO4 crystals at 8.5 GPa and 1,273 K. The low-temperature heat capacity (C p) of γ-Fe2SiO4 was measured between 5 and 303 K using the heat capacity option of a physical properties measurement system. The measured heat capacity data show a broad λ-transition at 11.8 K. The difference in the C p between fayalite and γ-Fe2SiO4 is reduced as the temperature increases in the range of 50–300 K. The gap in C p data between 300 and 350 K of γ-Fe2SiO4 is an impediment to calculation of a precise C p equation above 298 K that can be used for phase equilibrium calculations at high temperatures and high pressures. The C p and entropy of γ-Fe2SiO4 at standard temperature and pressure (S°298) are 131.1 ± 0.6 and 140.2 ± 0.4 J mol−1 K−1, respectively. The Gibbs free energy at standard pressure and temperature (Δ f,298) is calculated to be −1,369.3 ± 2.7 J mol−1 based on the new entropy data. The phase boundary for the fayalite–γ-Fe2SiO4 transition at 298 K based on current thermodynamic data is located at 2.4 ± 0.6 GPa with a slope of 25.4 bars/K, consistent with extrapolated results of previous experimental studies.  相似文献   

17.
Venice Lagoon, Italy, rests on a series of aquifers that are 1,000 m thick. Measurements of submarine groundwater discharge (SGD) were made in Venice Lagoon using benthic chambers vented to a plastic collection bag. Two hundred measurements taken in a pristine northern lagoon site (Isola la Cura) revealed flow rates as high as 200 cm d−1 with an average of 30 cm d−1. Over 100 measurements taken adjacent to a bulkhead shoreline in the Porto Marghera industrial zone (Fusina) showed flow rates as high as 30 cm d−1 and averaging 6 cm d−1. These flow rates, if representative of even a fraction of the lagoon floor, are easily able to account for the 15% deficit previously calculated between precipitation and runoff for the entire Venice Lagoon drainage basin. Land elevation surrounding the Venice Lagoon is < 10 m within 20 km of the shoreline and is unable to support any substantial onshore water table. Submarine groundwater discharge most likely represents upward artesian discharge from deeper partially confined aquifers. Over 60 samples were collected in total from both sites for nutrient analysis. Ammonium concentration was found to be 2–8 fold higher in the device water than in the lagoon water at the northern site depending on season, and 10–30 times higher at the industrial zone site. These numbers suggest that SGD may be the primary pathway for nutrients and perhaps other contaminants to enter Venice Lagoon.  相似文献   

18.
Biogeochemical processes occurring near the sediment-water interface of shallow (≈20 m) water sediments lying beneath the Mississippi River plume on the Louisiana shelf were studied using benthic chambers and sediment cores. Three sites were chosen with distinctly different characteristics. One was overlain by oxic water where aerobic respiration dominated organic matter remineralization. The second site was overlain by oxic water but organic matter remineralization was dominated by sulfate reduction. The third site was overlain by hypoxic water and aerobic remineralization was of minor significance. Major differences were observed in the fluxes of CO2(17–56 mmol m−2 d−1), O2(2–56 mmol m−2 d−1) and nutrients (e.g., NH4 +, 2.6–4.2 mmol m−2 d−1) across the sediment-water interface, and the relative importance of different electron acceptors, even though the sites were in close proximity and at nearly the same water depth. Large variations in the efficiency of organic-C burial (3%–51%) were also calculated based on a simplified model of the relationships between the fraction of organic matter remineralized by sulfate reduction and the fraction of sulfide produced that is buried as pyrite. These observations demonstrate the high degree of spatial heterogeneity of benthic biogeochemistry in this important near-deltaic environment.  相似文献   

19.
Single-crystal polarized Raman spectra (3,000–4,000 cm−1 at 3 ≤ T ≤ 300 K) were measured for synthetic alkali-free and natural beryl, Be2Al3Si6O18·xH2O, to determine the behavior of H2O molecules of both Type I and Type II in the cavities. At low temperature, the H2O molecules of Type I displace from the center of cavity and give rise to very weak hydrogen bonding with the host lattice. The H2O Type I translational motion is characterized by substantial anharmonicity and looks like a motion of “a particle in the box” with a frequency of 6.3 cm−1. Water Type II is characterized by a free rotation with respect to the C 2 molecule axis, and it makes possible the water nuclear isomers (i.e. ortho- and para-) to be observed at low temperature.
Boris KolesovEmail:
  相似文献   

20.
Compositional depth profiles in the leached layer of feldspar surfaces are usually interpreted by using analytical solutions which introduce oversimplifying assumptions. Here we present a general multicomponent interdiffusion numerical model for simulating cation release from a preferentially leached layer on feldspar surfaces in acid solutions. The numerical model takes into account interdiffusion, dissolution of the solid phase (represented by a moving boundary problem), and adsorption in the leached layer. Effective diffusion coefficients of ions vary with concentration along the leached layer. Governing equations of ions diffusion in the leached layer are solved numerically with a finite element method implemented in a multicomponent reactive transport code, CORE3D, previously verified against analytical solutions of compositional depth profiles. The numerical model is tested with published X-ray photoelectron spectroscopy (XPS) data on early development of compositional profiles of labradorite leached in pH 2 HCl solutions. Model parameters are estimated by fitting depth profiles of Ca and Al measured at 12, 26, 48, 72, and 143 h. The best fit is achieved with tracer diffusion coefficients of 4 × 10−18, 8 × 10−17, 3.4 × 10−17, and 7 × 10−18 cm2/s for H, Na, Ca, and Al, respectively, which fall within the range of values reported in the literature. Our estimate of the retreat velocity corresponding to the dissolution rate is 3 × 10−13 cm/s. Results of sensitivity runs show that computed compositional profiles are sensitive to most model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号