首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of the Brazilian disc test for determining indirect tensile strength and its applications in rock mechanics are reviewed herein. Based on the history of research on the Brazilian test by analytical, experimental, and numerical approaches, three research stages can be identified. Most of the early studies focused on the tensile stress distribution in Brazilian disc specimens, while ignoring the tensile strain distribution. The observation of different crack initiation positions in the Brazilian disc has drawn a lot of research interest from the rock mechanics community. A simple extension strain criterion was put forward by Stacey (Int J Rock Mech Min Sci Geomech Abstr 18(6):469–474, 1981) to account for extension crack initiation and propagation in rocks, although this is not widely used. In the present study, a linear elastic numerical model is constructed to study crack initiation in a 50-mm-diameter Brazilian disc using FLAC3D. The maximum tensile stress and the maximum tensile strain are both found to occur about 5 mm away from the two loading points along the compressed diameter of the disc, instead of at the center of the disc surface. Therefore, the crack initiation point of the Brazilian test for rocks may be located near the loading point when the tensile strain meets the maximum extension strain criterion, but at the surface center when the tensile stress meets the maximum tensile strength criterion.  相似文献   

2.
Normal Wedge Indentation in Rocks with Lateral Confinement   总被引:3,自引:2,他引:1  
Summary The paper reports results of a numerical analysis of the wedge indentation problem. The main objective of this research is to investigate the influence of the lateral confining stress on the development of the plastic zone under the indenter and on the initiation of tensile fractures. Numerical analysis indicates that the location of maximum tensile stress (interpreted as the point of crack initiation) moves away from the indentation axis as the lateral confinement increases. It is found that a small increase in the confining stress from zero induces a large increase in the inclination of this point on the indentation axis. However, the confinement does not reduce significantly the maximum tensile stress and it hardly influences the indentation pressure. These numerical results shed some light on the mechanism of formation of lateral or sub-horizontal tensile cracks observed in the indentation experiments.  相似文献   

3.
Indirect tension tests using Brisbane tuff Brazilian disc specimens under standard Brazilian jaws and various loading arcs were performed. The standard Brazilian indirect tensile tests caused catastrophic, crushing failure of the disc specimens, rather than the expected tensile splitting failure initiated by a central crack. This led to an investigation of the fracturing of Brazilian disc specimens and the existing indirect tensile Brazilian test using steel loading arcs with different angles. The results showed that the ultimate failure load increased with increasing loading arc angles. With no international standard for determining indirect tensile strength of rocks under diametral load, numerical modelling and analytical solutions were undertaken. Numerical simulations using RFPA2D software were conducted with a heterogeneous material model. The results predicted tensile stress in the discs and visually reproduced the progressive fracture process. It was concluded that standard Brazilian jaws cause catastrophic, crushing failure of the disc specimens instead of producing a central splitting crack. The experimental and numerical results showed that 20° and 30° loading arcs result in diametral splitting fractures starting at the disc centre. Moreover, intrinsic material properties (e.g. fracture toughness) may be used to propose the best loading configuration to determine the indirect tensile strength of rocks. Here, by using numerical outcomes and empirical relationships between fracture toughness and tensile strength, the best loading geometry to obtain the most accurate indirect tensile strength of rocks was the 2α?=?30° loading arc.  相似文献   

4.
Numerical models based on the discrete element method are used to study the fracturing process in brittle rock‐like materials under direct and indirect tension. The results demonstrate the capacity of the model to capture the essential characteristics of fracture including the onset of crack propagation, stable and unstable crack growth, arrest and reinitiation of fracturing, and crack branching. Simulations of Brazilian indirect tension tests serve to calibrate the numerical model, relating macroscopic tensile strength of specimens to their micromechanical breakage parameters. A second suite of simulations reveals a linear relationship between the tensile strength of specimens and the loading stress for which mode I tensile crack propagation ensues. Based on these results, a crack initiation criterion for brittle materials is proposed, prescribing the stressing conditions required to induce tensile failure. Such a criterion, if broadly applicable, provides a practical means to rapidly assess the failure potential of brittle materials under tensile loads.  相似文献   

5.
李铮  郭德平  周小平  王允腾 《岩土力学》2019,40(12):4711-4721
脆性岩石材料在压应力作用下常出现两类裂纹:翼型张拉裂纹和次生剪切裂纹。近场动力学是一种新型的无网格数值计算方法。在近场动力学理论中,采用积分形式的控制方程代替微分形式的控制方程使得该数值算法在断裂问题上具有独特的优势。将Mohr-Coulomb准则和最大主应力准则引入非普通“态”基近场动力学理论中,分别用于模拟材料常见的压剪和张拉破坏。这种扩展的非普通“态”基近场动力学可以有效地模拟脆性岩石材料在多种受力状态下的裂纹起裂、扩展和连接问题。通过5个不同的数值算例说明该数值算法在处理脆性岩石材料断裂问题的有效性和准确性。首先,通过模拟含圆孔的弹性板拉伸数值试验说明该数值算法的有效性和准确性。其次,数值模拟了简单三点弯曲试验以及不使用其他外部准则条件下动荷载作用下裂纹的分叉试验,所得结果与其他试验结果或数值结果相吻合,从而验证了该理论的有效性。然后,模拟了包含斜裂纹的巴西圆盘试验,裂纹扩展路径和计算所得的断裂韧度同样吻合于试验结果。最后,模拟了单轴压缩状态下,预制裂纹试样的裂纹扩展和连接问题。将该数值算法与试验结果对比表明,所提出的数值方法可以模拟和预测岩石类材料的张拉和压剪裂纹的起裂、扩展和连接行为。  相似文献   

6.
The validity and rationality of the Brazilian disc test have attracted much attention since it was proposed. To verify the validity of four Brazilian disc tests, red sandstone and yellow rust granite were employed. In these experiments, uniaxial tensile tests and four Brazilian disc tests were performed. Meanwhile, the typical location of the Brazilian discs was arranged with gages to detect the crack initiation location. By analyzing the rationality of the four Brazilian disc tests from two aspects, the crack initiation location and the difference between indirect tensile strength and direct tensile strength, it was found that the Brazilian disc tests without cushion and the Brazilian disc tests with two small-diameter steer rods are suitable for determining the indirect tensile strength of rock materials. However, the Brazilian disc tests with arc loading jaws should be carefully adopted to measure the indirect tensile strength due to their overestimation of the indirect tensile strength. Additionally, flattened Brazilian disc tests were found to be not suitable for measuring the indirect tensile strength of rock materials.  相似文献   

7.
In the present study, fracture initiation and propagation from a pre-existing plane interface in a Brazilian disc is investigated using a finite-discrete element combined method. Different fracture patterns, depending on the frictional resistance of the pre-existing crack or interface, are observed from the numerical simulation. It is found that when there is no or very little frictional resistance on the surfaces of the pre-existing crack, the primary fractures (wing cracks), which are tensile in nature and are at roughly right angles to the pre-existing crack, start from the tips of the pre-existing crack. As the friction coefficient increases, the wing cracks’ initiation locations deviate from the crack tips and move toward the disc center. Secondary fractures, which are also tensile in nature, initiate from the disc boundary and occur only when the length of the pre-existing crack is sufficiently long. The secondary fractures are roughly sub-parallel to the pre-existing crack. The failure load is found to be influenced by the friction coefficient of the pre-existing crack. A 38 % failure load increase can result when the friction coefficient changes from 0 to 1. A good understanding of the fracture initiation and propagation in the forms of primary and secondary fractures provides insight into explaining some fracture patterns observed underground.  相似文献   

8.
徐浩淳  金爱兵  赵怡晴  陈哲 《岩土力学》2022,43(Z2):588-597
基于颗粒流程序(particle flow code,PFC),对不同接触角(2a = 6º~30º)条件下25~1 000 ℃砂岩进行巴西劈裂模拟试验,研究其应力分布和破裂模式,并将巴西劈裂与直接拉伸进行对比。研究表明:(1)巴西劈裂中,面接触加载可以降低端部效应,加载过程中首先在圆盘中部产生拉裂纹,随着荷载的升高,拉裂纹汇集、扩展、贯通。(2)平板点接触巴西劈裂测得的抗拉强度小于直接拉伸强度,其抗拉强度计算公式的修正系数k随温度T的升高线性减小,满足k = −3.303×10−4T+1.468。随着接触角的增大,不同温度处理后巴西圆盘的抗拉强度均呈现出增大的趋势。(3)在2a≥18º时,巴西圆盘可以保证中心起裂;2a = 18º~24º时,圆盘在不同温度下破裂模式稳定;在接触角过大(2a = 30º)时,圆盘在较低温度(≤600 ℃)下会形成倾斜裂纹。(4)结合修正系数和破裂模式分析,推荐接触角为18º~24º时,修正系数在0.802 6~ 0.856 0之间,可以保证所有温度试样中心起裂且破裂模式稳定。  相似文献   

9.
《Engineering Geology》1986,22(3):281-292
Strength and deformation of a typical homogeneous sandstone under tensile stresses, have been studied in the laboratory, using standard tensile tests, viz. uniaxial tension, the Brazilian and beam bending tests. In addition to the parameters such as uniaxial tensile strength, modulus of deformation in tension and Poisson's ratio in tension obtained directly by the uniaxial tension test, the Brazilian tensile strength, the modulus and Poisson's ratio have also been determined by the Brazilian test. Bending tensile strength has been obtained by the beam bending test using the four-point loading system and the tensile modulus of elasticity has been estimated from the observations of beam bending and uniaxial compression tests, using “double elasticity” relationships.The rock under high tensile stresses is found to be much less “stiffer” than under high compressive stresses and is therefore likely to result in a relatively less violent tensile failure. The nature of the tensile deformation in the region of maximum tensile stress is found to be strikingly similar in all the three tensile tests under study. Although the initial, the 50% and the final tensile modulus values differ in each tensile test, the general trend of the tensile modulus with increasing stress is found similar in all these tensile tests.  相似文献   

10.
To deeply understand the cracking mechanical behavior of brittle rock materials, numerical simulations of a rock specimen containing a single preexisting crack were carried out by the expanded distinct element method (EDEM). Based on the analysis of crack tips and a comparison between stress- and strain-based methods, the strain strength criterion was adopted in the numerical models to simulate the crack initiation and propagation processes under uniaxial and biaxial compression. The simulation results indicated that the crack inclination angle and confining pressure had a great influence on the tensile and shear properties, peak strength, and failure behaviors, which also showed a good agreement with the experimental results. If the specimen was under uniaxial compression, it was found that the initiation stress and peak strength first decreased and then increased with an increasing inclination angle α. Regardless of the size of α, tensile cracks initiated prior to shear cracks. If α was small (such as α ≤ 30°), the tensile cracks dominated the specimen failure, the wing cracks propagated towards the direction of uniaxial compression, and the propagation of shear cracks was inhibited by the high concentration of tensile stress. In contrast, if α was large (such as α ≥ 45°), mixed cracks dominated the specimen failure, and the external loading favored the further propagation of shear cracks. Analyzing the numerical results of the specimen with a 45° inclination angle under biaxial compression, it was revealed that lateral confinement had a significant influence on the initiation sequence and the mechanical properties of new cracks.  相似文献   

11.
In this paper, a numerical model is presented to represent the fracture process in hard rocks based on a pseudo-discontinuum method called the Continuum Voronoi Block Model (CVBM). To validate this tool, numerical models for one Brazilian test, one unconfined compression test, and multiple triaxial compression tests with different confining stress were calibrated to match laboratory test results for Creighton granite. The model proved robust and matched the following macro-properties: crack initiation (CI) stress, (CD) stress, peak strength, tensile strength, Young's Modulus, and Poisson's ratio. The calibrated model served as a basis for a sensitivity study to analyze how micro-properties influence the rock's macroscopic responses. From the sensitivity study, a calibration methodology was proposed, which shall facilitate the use of the CVBM in future works.  相似文献   

12.
理论上土体的抗拉强度与抗压和抗剪强度一样是描述土体力学性质的重要指标之一,也是研究土体张拉破坏特性的基础。由于土体抗拉强度在数值上相对较小,且难以准确测量,在岩土工程领域常常被忽视。随着工程中的张拉破坏问题越来越突出,土体抗拉强度特性引起许多学者的关注,相关研究成果也越来越多。文中对土体抗拉强度试验研究方法进行了系统的归纳和总结,对比分析了各种方法的优缺点,认识到,(1)土体抗拉强度试验方法总体上可分为直接法和间接法两大类,直接法是在试样两端直接施加拉力直到试样发生张拉破坏,根据破坏时的最大拉力及对应的破裂面面积计算出土体的抗拉强度。间接法主要通过一些理论假设,把压应力转换成相应的拉应力并基于一些理论公式计算土体抗拉强度;(2)按试样受力条件,直接法可分为单轴拉伸和三轴拉伸,一般都需要开发专门的拉伸试验设备,以实现拉力荷载的施加及其在试样内的有效传递。常用的方式有粘结、锚固、模具夹持及摩擦力传递等,都各有优缺点,但模具夹持法相对而言更具操作性。间接法中比较有代表性的有巴西劈裂试验、土梁弯曲试验和轴向压裂试验等,一般较适应于刚度较大的土体如化学固化土。最后,笔者提出了今后该课题的研究重点,包括制定土体抗拉强度试验方法规范及标准,研发简单易操作的土体拉伸试验设备,拉伸试验过程中土吸力的测量及控制方法,土体拉伸过程中应变场的准确获取方法及土体张拉特性的数值模拟研究等。  相似文献   

13.
Summary The maximum tensile stress at failure for a dry specimen, as determined by the Boussinesq equation for the diametrical point load test, was found to be in very good agreement with the diametrical point load tensile strength (Is) as defined by ISRM (1985). The force at failure for specimens of different geometry was used to determine the stress distribution along the line of loading. Distinctive tensile stress gradients dominate almost 84 percent of the specimen radius regardless of the size of the specimen. The maximum tensile stress is located away from the centre of the specimen at a distance approximately 76 percent along the specimen radius, measured from the centre. The stress magnitude at the centre of the specimen is small and represents about 13 percent of the maximum tensile stress calculated, which suggests that the initiation of the fracture is not from the specimen centre. At the zone of contact between the specimen and the loading cones there exists great compressive stress in areas where much material destruction occurs under the loading platen cones. The value of this compressive stress varies from specimen to specimen and, for the material used in these experiments (Oolitic limestone), ranges from 5.3 to 7.2 times the dry unconfined compressive strength of the material. According to the ISRM Suggested Method for Point Load Test, Is (50) is approximately 0.8 times the uniaxial tensile strength. The maximum tensile stress revealed by the Boussinesq equation (Bs) was correlated with Is (50) and found to be in the order of 0.9 times the uniaxial tensile strength.  相似文献   

14.
The hydraulic fracture is modelled as an ellipse in an infinite elastic medium with an internal fluid pressure and loaded under biaxial stresses at infinity. The available stress function for this model has been evaluated numerically, and the magnitudes of the stresses generated around the crack calculated for a variety of loading conditions and crack orientations. Fracture initiation is predicted from the Griffith maximum tensile stress criterion. The location of the maximum tensile stress around the crack is recorded and it is found that for many conditions of applied stresses and crack fluid pressure, the hydraulic shear fracture has a symmetrically developed maximum tensile stress and fracture initiation will occur by growth along the direction of the crack. It is also predicted that fracture initiation will occur when the ratio of fluid pressure to applied least principal stress is considerably less than one. The elastic strain energy fields around elliptical hydraulic flaws have been calculated, and in particular, the change in strain energy upon introduction of a small flaw, and the change in strain energy upon growth of this flaw, have been investigated. The results allow an evaluation of the second part of the Griffith criterion-that fracture growth is accompanied by a decrease in strain energy-for hydraulic fractures. Changes in strain energy with small increases in fluid pressure provide a physical basis for dilatancy hardening and fracture instability. Quasi-static growth from a flaw is modelled by calculating changes in strain energy for unit increases in half length. The distinction between fractures which show an increasing and a decreasing rate of change in strain energy with increasing length, and between fractures which may only extend spontaneously for short distances and those which may show extensive spontaneous growth on the basis of the rate of change of strain energy with length, is made. A gradual drop in crack fluid pressure once the threshold for fracture initiation has been passed may promote the extent to which spontaneous crack growth occurs.The formation of syntectonic veins, particularly in rocks being deformed under low grade metamorphic conditions, is often the most abundant evidence of natural hydraulic fracturing in rocks. Commonly observed geometric features of syntectonic veins-length, simple tapering, symmetric and asymmetric forking, branching, irregular zig-zag traces, en échelon patterns—are discussed primarily with reference to the strain energy model for growth established, and the geometric variation is interpreted in terms of variation in applied stress and fluid pressure conditions and the rate of change of stored strain energy with crack growth. In particular, terminal branching arises when the minimum stress changes from a symmetric to an asymmetric location at the tip of a growing shear fracture, and terminal forking results when there is an increase in the energy release rate during crack growth, and may be symmetric or asymmetric depending on the location of the minimum stress at the crack tip at the time of forking.  相似文献   

15.
黄正红  邓守春  李海波  于崇 《岩土力学》2018,39(Z1):267-274
采用自制的压–拉转换装置,配合RMT 150C岩石力学试验系统及数字散斑相关方法,对双边非对称裂纹类岩石平板试样进行直接拉伸试验,得到类岩石试样的拉应力–应变曲线、试样表面应变场演化过程和裂纹扩展模式。研究发现,类岩石试样直接拉伸的拉应力–应变曲线大致可以分为4个阶段:(1)近似线性阶段,预制裂纹基本不起作用,应力随应变增加较快,试样表面应变场的分布主要受试样内部的孔隙及颗粒的影响;(2)整体缓慢增加阶段,两预制裂纹和试样内部的孔隙及颗粒共同影响试样表面应变场的分布,整体上应力随应变呈增加趋势;(3)短暂峰值过渡阶段,试样中某个预制裂纹对试样表面应变场的分布起决定性作用;(4)破坏阶段,裂纹起裂位置在应变场相对集中区域,并扩展导致试样破坏。对于直接拉伸条件下的双边非对称裂纹平板试样,其中某条预制裂纹会率先扩展,先向远离前方裂纹的方向扩展,再向靠近前方裂纹的方向扩展,对采用数值模拟方法研究张拉应力状态下裂纹相互作用扩展规律具有重要意义。  相似文献   

16.
Mapping the state of fracture around cavities   总被引:3,自引:0,他引:3  
The state of stress around cavities is heterogeneous. Consequently, the state of fracture may also vary from point to point. Under compressive loading, cavity may be in one of four possible states: pre-fracture (pre-microfracture initiation), microfracture propagation (initiation to the onset of dilata dilatancy to failure) and post-failure. These four states are separated by the crack initiation stress, the crack damage stress and the failure stress. fracture events with confining pressure is examined with reference to three intact rocks: a brittle granite, a semi-brittle limestone and a ductile sal

The maximum principal stress (σ1) at crack initiation, crack damage (onset of dilatancy), yielding and failure are established as a function stress (σ3). For a single intact rock, all four fracture events can be represented using one function (the Rocker function) with a single fac various fracture states.

The proposed fracture criteria, based on the experimental data, are combined with the existing state of stress to prepare a fracture map around an elli intact Lac du Bonnet granite. The state of stability is expressed through a newly defined stability factor, the unconfined strength ratio (USR), wh to the traditional safety factor. In contrast to the conventional safety factor in rock mechanics (SFstrength/σ1), which is σ3 3–σ1, space of the stability diagram.  相似文献   


17.
脆性岩储层裂缝定量预测的尝试   总被引:15,自引:0,他引:15  
本文由四部分内容组成:(1)根据格里菲斯强度理论,讨论了脆性岩层在应力场(约定张为正)作用下,格里菲斯强度理论的一种破裂准则表示式及其在储层裂缝分析中的应用;(2)给出碳酸盐岩储层古应力场定量分析的三种数学力学模型和计算方法以及古裂缝定量预测可靠程度;(3)提出储层有效张应力概念及描述潜在张裂缝的方法;(4)提供某油田碳酸盐岩储层张裂缝的预测图及其以后通过钻井的检验。   相似文献   

18.
刘跃东  林健  冯彦军  司林坡 《岩土力学》2018,39(5):1781-1788
为了揭示水压致裂法和巴西劈裂法测量岩石抗拉强度的关系,开展了理论和现场试验研究。基于经典的水压致裂法理论,推导了不同围压下钻孔破裂压力和抗拉强度。利用断裂力学理论建立了水压致裂法和巴西劈裂法测得抗拉强度的关系。利用预制切槽方法模拟天然裂纹,对水力裂缝的起裂压力进行了研究。结果表明:围压为最大主应力等于3倍最小主应力测得的抗拉强度大于围压为0测得的抗拉强度;水压致裂法和巴西劈裂法测量抗拉强度关系与应力场、裂纹长度、断裂韧度3个变量有关;通过在晋城矿区王台铺矿的预制切槽试验,运用断裂力学建立的抗拉强度计算式更为符合现场实际。研究结果可为坚硬难垮落顶板预制切槽的水力压裂设计提供参考。  相似文献   

19.
Crack propagation trajectories for rocks under mixed mode I-II fracture   总被引:4,自引:0,他引:4  
Propagation of a crack in engineering materials including rocks can cause failure. Knowledge of the stress state under which a crack can propagate, and the trajectory it may follow during its growth are thus very important for the stability of rock masses/materials and for the safe design of structures in/on rocks. In this paper, the crack initiation angle and subsequent crack propagation path are experimentally investigated for limestone rock specimens. This investigation was conducted under various mixed mode I-II loading conditions, including pure mode-I and pure mode-II.This study includes conducting diametrical compression tests on notched Brazilian disk specimens. Moreover, the effect of confining pressure and temperature on crack initiation and propagation were also studied. The experimental results were compared with theoretical predictions of crack initiation angle. The results showed that limestone behaves in brittle fashion, and the effects of confining pressure and temperature on failure trajectories were not significant. Generally, the crack initiation angle can be predicted by the maximum tangential stress criterion. However, for notched Brazilian disk with high value of crack orientation with respect to loading direction, crack does not propagate from the tip of the crack. This important observation indicated that the tensile-strength failure can become more critical than the fracture-toughness failure.  相似文献   

20.
岩体内部赋存的裂隙很多表现为折线型,为探究这类岩体的断裂机制,制备含折线型裂隙砂岩试件并对其进行单轴压缩试验。采用数字图像相关(DIC)方法计算加载过程中的变形场演化,根据新生裂纹两侧的位移差异识别裂纹类型;运用扩展有限元法(XFEM)模拟断裂过程,根据应力分布特征解释翼型裂纹起裂与扩展机制。DIC计算结果表明,新生裂纹处出现应变局部化带,裂纹两侧发生相对分离;含直线型和折线型裂隙砂岩试件的翼型裂纹分别萌生于预制裂隙端部以及折角处,这是因为裂隙几何形态会改变拉应力集中位置;含折线型裂隙砂岩试件的起裂应力小于含直线型裂隙砂岩试件,这是因为相同加载条件下前者的最大拉应力值更大;这2类试件的裂纹扩展均是由于裂纹尖端集中的拉应力引起的,裂纹依然呈张开状态;裂隙几何形态未改变试件的最终破坏模式,均表现为对角剪切破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号