首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The theory of strong discontinuities in plasma with anisotropic pressure is applied for interpretation of the recent plasma and magnetic experiments on the boundary and in the tail of the magnetosphere. The properties of the discontinuities are described. It is supposed that on the boundary and in the tail of the magnetosphere anisotropic discontinuities occur with a nonzero normal component of the magnetic field. The general consequence of this assumption is the existence of the magnetospheric surface flow expanding from the subsolar point. The consequence does not contradict the data obtained on IMP 5. For the investigation of the low latitude part of the flow, the use of electrostatic analysers is desirable with the entrance oriented along the magnetospheric surface. The well-known qualitative scheme of the hydrodynamical flow with strong discontinuities in the tail is generalized by means of the three anisotropic discontinuities: the contact one coinciding with the magnetic neutral sheet, and the two discontinuities with the nonzero normal flow of the mass simulating the boundary of the plasma sheet. The result of the scheme of the components of the bulk velocity in the plasma sheet agrees with the recent observations on the Vela 4B. The scheme connects the well-known phenomena of the blocking and the thinning of the plasma sheet in the initial phase of the substorm. According to the general principles of the reconnection the dynamical dissipation is decreased by the blocking of the flow in the plasma sheet. The decrease leads to a drift of the plasma sheet boundary in the neutral sheet direction. The reverse picture is probably a result of a relaxation of the blocking.  相似文献   

2.
Tikhomolov  Evgeniy 《Solar physics》2001,199(1):165-186
In the traditional axisymmetric models of the 11-year solar cycle, oscillations of the magnetic fields appear in the background of nonoscillating (over time scale considered) turbulent velocity fields and differential rotation. In this paper, an alternative approach is developed: The excitation of magnetic oscillations with the 22-year period is the consequence of hydrodynamic oscillations with the 11-year period. In the excitation of hydrodynamic oscillations, two processes taking place in high latitudes near the interface between the convective and radiative zones play a key role. One is forcing of the westerly zonal flow, the conditions for which are due to deformation of the interfacial surface. The other process is the excitation of a shear instability of zonal flow as a consequence of a strong radial gradient of angular velocity. The development of a shear instability at some stage brings about the disruption of the forcing of differential rotation. In the first (hydrodynamic) part of the paper, the dynamics of axisymmetric flows near the bottom of the convection zone is numerically simulated. Forcing of differential rotation having velocity shear in latitude and the existence of solutions in the form of torsional waves with the 11-year oscillation period are shown. In the second part the dynamics of the magnetic field is studied. The most pronounced peculiarities of the solutions are the existence of forced oscillations with the 22-year period and the drift of the toroidal magnetic field component from the mid latitudes to the equator. In high and low latitudes after cycle maximum, the toroidal component is of opposite sign in accordance with observations. In the third part, the transport of momentum from the bottom of the convection zone to the outer surface by virtue of diffusivity is considered. The existence of some sources of differential rotation in the convection zone is not implied. A qualitative correspondence of the differential rotation profile in the bulk of the convection zone and on its outer surface to experimental data is shown. The time correspondence between torsional and magnetic oscillations is also in accordance with observations.  相似文献   

3.
4.
本文在中子星磁层与吸积盘之间引入了一个速度、密度、压强和磁场都连续变化的有限厚度的剪切层,以代替Anzer理论中的切向间断面,用磁流体力学方法讨论了中子星磁层与吸积盘交界处等离子体可压缩情况下平面波扰动的K-H不稳定性。结果表明,K-H不稳定性依然存在,径向波矢扰动成为不稳定的主要模式。文中特别讨论了剪切层厚度取值对中子星自转的影响,表明适当调节剪切层厚度就可解释X射线脉冲星周期的变化。将此模型应用到脉冲X射线源Her X-1上,得到较好的结果。  相似文献   

5.
The masses of a pair of stars in the visual binary system have been estimated. The angle between the orbital plane of the stars and the plane of the sky has been taken into account. Inclination of the major axes of the orbits of the stars with the line of interaction between the orbital plane and the plane of the sky has also been considered. These two inclinations are also computed in terms of the observed quantities. Major and minor axes of actual orbits of the stars are determined.  相似文献   

6.
A new spectral-frequency method (SFM) for the study of solid body surfaces is briefly described. This method allows estimation of the sizes of various spots. Estimates for the sizes of spots on asteroid surfaces made by the SFM and other methods are compared and discussed. The sizes of spots on the surface of asteroid 1620 Geographos determined by the SFM are well consistent with those of the craters obtained from radar data. The sizes of hydrosilicate spots on the surface of asteroid 21 Lutetia found by the SFM agree with those of the craters determined by the Rosetta spacecraft. The size of a blue spot on the surface of asteroid 4 Vesta found by the SFM is consistent with the size of the well-known crater on the south pole of the asteroid. It is inferred that the SFM is a promising method for the estimation of the sizes of spots on asteroid surfaces.  相似文献   

7.
The research on quasar OJ 287 has lasted over 100 years. OJ 287 exhibits the phenomenon of periodic two-peak outbursts with the eruptive period of 12 years. Observations are rather well interpreted with the black hole binary model. In this model, the secondary black hole moves around the primary black hole and crashes against the accretion disk of the primary black hole, causing outbursts. This model reasonably explains the light curves of OJ 287 and correctly predicts the time of future outbursts. These indirectly justify the precessional effect of general relativity and the existence of gravitational waves. The massive black hole in the center of galaxy is an important kind of gravitational wave source. However, the number of the galaxies with precisely determined kinematical equations of inner components is quite small. The precise kinematic orbits of black holes are provided by the black hole binary model, so the radiation of gravitational waves can be studied on the basis of these kinematic orbits. Based on the existing work, the evolutionary relations of the radiation power and waveform of gravitational waves with time are first derived by using the post-Newtonian approximation method. According to the current progress of the detection equipment of gravitational waves, i.e., IPTA (International Pulsar Timing Array), the direct detection of gravitational waves from OJ 287 may be possible within the future decade.  相似文献   

8.
9.
We study the motion of the free dual-spin gyrostat spacecraft that consists of the platform with a triaxial ellipsoid of inertia and the rotor with a small asymmetry with respect to the axis of rotation. The system with perturbations caused by a small asymmetry of the rotor and the time-varying moments of inertia of the rotor is considered. The dimensionless equations of the system are written in Serret–Andoyer canonical variables. The system’s phase space is described. It is shown that changes in the moments of inertia of the gyrostat leads to the deformation of the phase space. The internal torque control law is proposed that keeps the system at the center point in the phase space. The effectiveness of the control is shown through a numerical simulation. It’s shown that the uncontrolled gyrostat can lose its axis orientation. Proposed internal torque keeps the initial angle between the axis of the gyrostat and the total angular momentum vector.  相似文献   

10.
From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions.  相似文献   

11.
A technique for the analysis of photoelectrically scanned double star images is described. The method consists of comparing the Fourier transform of the double star profile with that of a single star profile imaged through the same telescope. If the measured profile of the double star image can be considered to be a linear superposition of two profiles, each identical in shape to the measured profile of a nearby single star, a comparison of the Fourier transforms of these profiles enables the parameters of the double star system to be determined. Certain features of the ratio of the moduli of the transforms yield both the separation and the magnitude difference between the components. A comparison of the phases of the transforms enables one to establish which of the two components is the brighter.  相似文献   

12.
This paper describes the results of studies of dynamical chaos in the problem of the orbital dynamics of asteroids near the 3 : 1 mean-motion resonance with Jupiter. Maximum Lyapunov characteristic exponents (MLCEs) are used as an indicator and a measure of the chaoticity of motion. MLCE values are determined for trajectories calculated by the numerical integration of equations of motion in the planar elliptical restricted three-body problem. The dependence of the MLCE on the problem parameters and on the initial data is analyzed. The inference is made that the domain of chaos in the phase space of the problem considered consists of two components of different nature. The values of the MLCEs observed for one of the components (namely, for the component corresponding to low-eccentricity asteroidal orbits) are compared to the theoretical estimates obtained within the framework of model of the resonance as a perturbed nonlinear pendulum.  相似文献   

13.
We present the results of the application of the G-mode method to the spectral classification of the icy satellites of the giant planets. G-mode is a multivariate statistical technique for the classification of samples depending on many variables. Here this method is tested on the infrared spectra acquired by the Cassini/VIMS instrument onboard the Cassini spacecraft. This work demonstrates the suitability of automatic spectral classification methods for the study of fair resolution spectra, such as those from VIMS. Our data set is composed by two different kinds of data: observations of point targets (Galilean satellites data) and observations with medium spatial resolution (Phoebe data). In both situations, the G-mode classification performed well. In the first case, of a large number of subpixel observations of the Galilean satellites, through the G-mode it was possible to find statistically meaningful spectral groups of observations. In the case of Phoebe, of some spatially resolved observations, the G-mode classification of␣the infrared spectra of the surface led to several types, dominated by the different illumination geometry of the pixels, because, due to the irregular shape of the satellite, a proper illumination correction was not trivial to apply. Nevertheless, the decrease of the confidence level of the test as well as the re-application of the G-mode on the main type found, led to further types, whose statistical distance can be related to different chemical abundances. We plan to use the G-mode also on the data coming from ongoing and future observations of the icy Saturnian satellites.In the helioseismology literature, G-modes are gravity wave modes of the frequencies of oscillations of the Sun. Here we are dealing with a clustering method, which is essentially different.*E-mail: federico.tosi@rm.iasf.cnr.it  相似文献   

14.
To evalute the effect of the non-uniform surface on the radiation field, the upwelling radiation at the top of the atmosphere bounded by the checkerboard type of terrain is computed using the modified doubling method. The terrain is composed of the square Lambert surfaces with two different albedoes. The dimension of the each square is assumed to be 0.5–6 km. The radiance of the terrain is discussed with respect to the atmospheric effect. The observational site is located at altitude 30 km. The corresponding projected point on the ground is located at the center of a square. The solar and observational direction is located in the plane parallel to the checkerboard squares. The atmosphere is assumed to be homogeneous, which is composed of aerosol and molecules, where the model aerosol is of the oceanic or the water soluble types.Numerical simulation exhibits the extraordinary effect near the edge of each squares. The radiance of the terrain depends upon the difference of albedoes and size of squares. It increases with the increase of the dimension of the square. It decreases with the optical thickness. At large optical thickness, the variation of radiation with zenith direction depends upon the aerosol characteristics. It shows little dependence on the solar zenith angle if less than 20°.  相似文献   

15.
We consider the ejection of one stellar system from the centre of another stellar system, representing both by Plummer models. Using the impulsive appoximation, we derive analytically the overall and differential energy changes and also the mass escape from the systems. We compare the results with those obtained for colliding systems.We find that the disruptive effects are considerably less in the case of ejection. If the ejected system is compact, it escapes with negligible disruptive effects.In the case of ejections, stars are also accelerated in the direction of motion of the system. Using a dimensionless parameter λ defined as the ratio of the squares of the stellar velocity perturbations in the direction of motion of the system and perpendicular to it, we find a significant difference between ejecting systems and colliding systems. In fast head-on collisions of spherical stellar systems, the systems become elongated in the direction perpendicular to the direction of motion whereas in the case of ejecting systems, they also become elongated in the direction of motion. These effects are more pronounced in the outer regions of the smaller system and the innner regions of the bigger system. These effects are enhanced if the ejected system is compact.  相似文献   

16.
云南天文台40m射电望远镜进行的脉冲星观测数据量巨大,必须实现数据的实时处理,否则将会产生海量的数据积压.为实现这一目标,采用图形处理器架构,对Mark5B数据进行解码、消色散、折叠等处理.实验结果表明,对以1s8MB的实时采样,可以在0.51s内处理完成,从而实现了实时处理的要求.首先介绍这一观测系统各部分的图形处理器实现,然后相对于传统中央处理器构架,对各部分的运算速度进行了详细的对比.针对时间开销最大的消色散部分,分析了单次傅里叶变换的数据量大小对执行效率的影响.从系统最终的输出轮廓和柱状图上可以看到实时处理的结果符合要求.最后对存在的问题和未来的工作进行了讨论.  相似文献   

17.
We present the secular theory of coplanar N -planet system, in the absence of mean motion resonances between the planets. This theory relies on the averaging of a perturbation to the two-body problem over the mean longitudes. We expand the perturbing Hamiltonian in Taylor series with respect to the ratios of semimajor axes which are considered as small parameters, without direct restrictions on the eccentricities. Next, we average out the resulting series term by term. This is possible thanks to a particular but in fact quite elementary choice of the integration variables. It makes it possible to avoid Fourier expansions of the perturbing Hamiltonian. We derive high-order expansions of the averaged secular Hamiltonian (here, up to the order of 24) with respect to the semimajor axes ratio. The resulting secular theory is a generalization of the octupole theory. The analytical results are compared with the results of numerical (i.e. practically exact) averaging. We estimate the convergence radius of the derived expansions, and we propose a further improvement of the algorithm. As a particular application of the method, we consider the secular dynamics of three-planet coplanar system. We focus on stationary solutions in the HD 37124 planetary system.  相似文献   

18.
We found an evidence that the luminosity of the Sun systematically decreased about 20 days before sunspot surface appearance by analysing time-lag correlation of time derivatives of running mean time profiles of the data of the Active Cavity Radiometer Irradiance Monitor (ACRIM) I experiment on board of Solar Maximum Mission (SMM) and of the data of the daily sunspot number. This indicates that sunspot flux tube cooling and heat transport blocking by the flux tubes start to take place in the interior of the solar convection zone well before the sunspot surface appearance. From this finding and our previous finding that the luminosity of the Sun systematically increased and the blocked heat appeared on the surface about 50 days after the sunspot surface appearance, a new view of sunspot formation and dynamics and a new view of the luminosity modulation emerged. (i) Sunspots of a solar cycle are formed from clusters of flux tubes which can be seen in the running mean time profile of the sunspot number as a peak with duration on the order of 100 to 200 days. (ii) Heat flow is blocked by the cluster of sunspot flux tubes inside the convection zone to decrease the luminosity about 20 days before the surface emergence of the sunspot cluster. (iii) The blocked heat appears on the surface about 50 days after the surface emergence of the cluster of sunspot flux tubes to heat up the surface. This appears as a thermal pulse in the running mean time profile of the ACRIM dat in between the peaks of the sunspot running mean time profile. This process of heating the surface makes the temperature gradient less steep and weakens the buoyancy of sunspot flux tubes below the surface. (vi) The radiative cooling of the surface layer by the excess heat release steepens the temperature gradient so that the buoyancy of the sub-surface magnetic flux tubes becomes stronger to cause the next surge of emergence of a cluster of sunspots and other magnetic activities, which creates a peak in the time profile of the sunspot number. We call this peak a magnetic pulse of the Sun and the coupled process of alternating pulsed appearance of heat and sunspots the magneto-thermal pulsation of the Sun.  相似文献   

19.
引力常数变化对地球自转长期变化的影响   总被引:1,自引:0,他引:1  
探讨和估计了各种引力常数变化理论对地球角速度和日长变化的影响。各种引力常数变化理论包括了引力常数G随时间、空间以及速度变化等几个方面的影响。另外也估计了对地球自转角速度和日长变化产生的效应。其中有些研究对探讨地球自转变化也有启发意义。  相似文献   

20.
We present N -body simulations (including an initial mass function) of globular clusters in the Galaxy in order to study effects of the tidal field systematically on the properties of the outer parts of globular clusters. Using nbody6 , which correctly takes into account the two-body relaxation, we investigate the development of tidal tails of globular clusters in the Galactic tidal field. For simplicity, we have employed only the spherical components (bulge and halo) of the Galaxy, and ignored the effects of stellar evolution which could have been important in the very early phase of the cluster evolution. The total number of stars in our simulations is about 20 000, which is much smaller than the realistic number of stars. All simulations had been done for several orbital periods in order to understand the development of the tidal tails. In our scaled-down models, the relaxation time is sufficiently short to show the mass segregation effect, but we did not go far enough to see the core collapse, and the fraction of stars lost from the cluster at the end of the simulations is only ∼10 per cent. The radial distribution of extra-tidal stars can be described by a power law with a slope around −3 in surface density. The directions of tidal tails are determined by the orbits and locations of the clusters. We find that the length of tidal tails increases towards the apogalacticon and decreases towards the perigalacticon. This is an anti-correlation with the strength of the tidal field, caused by the fact that the time-scale for the stars to respond to the potential is similar to the orbital time-scale of the cluster. The escape of stars in the tidal tails towards the pericentre could be another reason for the decrease of the length of tidal tails. We find that the rotational angular velocity of tidally induced clusters shows quite different behaviour from that of initially rotating clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号