首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

2.
Although large-scale tidal and inertial motions dominate the kinetic energy and vertical current shear in shelf seas and ocean, short-scale internal waves at higher frequencies close to the local buoyancy frequency are of some interest for studying internal wave breaking and associated diapycnal mixing. Such waves near the upper limit of the inertio-gravity wave band are thought to have relatively short O (102–103 m) horizontal scales and to show mainly up- and downward motions, which contrasts with generally low aspect ratio large-scale ocean currents. Here, short-term vertical current (w) observations using moored acoustic Doppler current profiler (ADCP) are presented from a shelf sea, above a continental slope and from the open ocean. The observed w, with amplitudes between 0.015 and 0.05 m s−1, all span a considerable part of the water column, which is not a small vertical scale O(water depth) or O (100–500 m, the maximum range of observations), with either 0 or π phase change. This implies that they actually represent internal waves of low vertical modes 1 or 2. Maximum amplitudes are found in layers of largest stratification, some in the main pycnocline bordering the frictional bottom boundary layer, suggesting a tidal source. These ‘pycnocline-w’ compose a regular train of (solitary) internal waves and linearly decrease to small values near surface and bottom.  相似文献   

3.
A detailed set of observations are presented of the tidal forcing and basin response of Loch Etive, a jet-type fjordic system on the west coast of Scotland. The characteristics of the tidal jet observed during a spring tide are discussed in detail, and with reference to laboratory studies of Baines and Hoinka (1985). Although the system is categorized as a jet basin during spring tides (when the mode-1 densimetric Froude number exceeds 1) and a wave basin during neap tides (when the Froude number remains below 1), a mode-1 baroclinic wave response is observed throughout the spring/neap cycle. Of the total incident tidal energy, 16% is lost from the barotropic tide. The ratio between loss to bottom friction, barotropic form drag and baroclinic wave drag is estimated to be 1:4:1 (1:4:3.3) at springs (neaps). Despite this, during a spring tide, a 20-m amplitude baroclinic mode-1 wave is observed to propagate along the full length of the basin at a speed of 0.2 m s–1, somewhat slower than the predicted linear mode-1 phase speed. A hydrographic section supports the implication of the dissipation of the baroclinic wave towards the loch head. The stratification of the upper layers is observed to decrease rapidly landward of the 40-m isobath, a possible signature of enhanced diapycnal mixing in the shallower reaches towards the loch head.Responsible Editor: Jens Kappenberg  相似文献   

4.
The seasonal cycle of the main lunar tidal constituent M 2 is studied globally by an analysis of a high-resolution ocean circulation and tide model (STORMTIDE) simulation, of 19 years of satellite altimeter data, and of multiyear tide-gauge records. The barotropic seasonal tidal variability is dominant in coastal and polar regions with relative changes of the tidal amplitude of 5–10 %. A comparison with the observations shows that the ocean circulation and tide model captures the seasonal pattern of the M 2 tide reasonably well. There are two main processes leading to the seasonal variability in the barotropic tide: First, seasonal changes in stratification on the continental shelf affect the vertical profile of eddy viscosity and, in turn, the vertical current profile. Second, the frictional effect between sea-ice and the surface ocean layer leads to seasonally varying tidal transport. We estimate from the model simulation that the M 2 tidal energy dissipation at the sea surface varies seasonally in the Arctic (ocean regions north of 60°N) between 2 and 34 GW, whereas in the Southern Ocean, it varies between 0.5 and 2 GW. The M 2 internal tide is mainly affected by stratification, and the induced modified phase speed of the internal waves leads to amplitude differences in the surface tide signal of 0.005–0.0150 m. The seasonal signals of the M 2 surface tide are large compared to the accuracy demands of satellite altimetry and gravity observations and emphasize the importance to consider seasonal tidal variability in the correction processes of satellite data.  相似文献   

5.
Vlasenko  Vasiliy  Stashchuk  Nataliya  McEwan  Robert 《Ocean Dynamics》2013,63(11):1307-1320

Evolution of a large-scale river plume is studied numerically using the Massachusetts Institute of Technology general circulation model. The model parameters were set close to those observed in the area of the Columbia River mouth. The fine-resolution grid along with the non-hydrostatic dispersion included in the model allowed for the reproduction of detailed inner plume structure, as well as a system of internal waves radiated from the plume’s boundary. It was found that not only first-mode but also second- and third-mode internal waves are radiated from the plume at the latest stages of its relaxation when the velocity of the front propagation drops below an appropriate wave phase speed of internal baroclinic mode. The model output shows that the amplitude of these high-mode waves is of the same order as the leading first-mode waves, which in combination with the specific vertical structure (location of the maximum structure function beyond the pycnocline layer) creates favourable conditions for the generation of shear instabilities. High-resolution model output also reveals evidence of a fine internal structure of the plume characterized by the presence of secondary fronts inside the plume and secondary internal wave systems propagated radially from the lift-off area to the outer boundary. These structures intensify the mixing processes within the propagating plume with predominance of the entrainment mechanism developing on the lower boundary between the plume’s body and underlying waters. The scheme of horizontal circulation in the plume was reproduced by the methodology of Lagrange drifters released near the mouth at different depths.

  相似文献   

6.
The results of modeling for M2M2 surface and internal tides in the White Sea are discussed. These results are obtained for the case when shore-fast and drifting ice covers are present concurrently. It is assumed that the interface between ice covers is of non-tidal origin (i.e., it is pre-assigned) and that ice rheology is viscous-elastic, representative of the low temperatures typical of winter conditions. Emphasis is placed on tidal energetics and, in particular, on the averaged (over a tidal cycle) values of the density and the dissipation rate of barotropic/baroclinic tidal energy. It is shown that in the White Sea, unlike in other marginal seas, the averaged (over a tidal cycle) and depth-integrated density of baroclinic tidal energy for the combined ice cover is much less than the same defined density of barotropic tidal energy. Similarly, the averaged and integrated (over the volume of the White Sea) rate of baroclinic tidal energy dissipation is much less than the same defined rate of barotropic tidal energy dissipation. The latter, in turn, is greater than for the shore-fast ice cover, but is smaller than for the drifting ice cover.  相似文献   

7.
The response of tidal and residual currents to small-scale morphological differences over abrupt deep-sea topography (Seine Seamount) was estimated for bathymetry grids of different spatial resolution. Local barotropic tidal model solutions were obtained for three popular and publicly available bathymetry grids (Smith and Sandwell TOPO8.2, ETOPO1, and GEBCO08) to calculate residual currents from vessel-mounted acoustic Doppler current profiler (VM-ADCP) measurements. Currents from each tidal solution were interpolated to match the VM-ADCP ensemble times and locations. Root mean square (RMS) differences of tidal and residual current speeds largely follow topographic deviations and were largest for TOPO8.2-based solutions (up to 2.8 cm?s?1) in seamount areas shallower than 1,000 m. Maximum RMS differences of currents obtained from higher resolution bathymetry did not exceed 1.7 cm?s?1. Single depth-dependent maximum residual flow speed differences were up to 8 cm?s?1 in all cases. Seine Seamount is located within a strong mean flow environment, and RMS residual current speed differences varied between 5 % and 20 % of observed peak velocities of the ambient flow. Residual flow estimates from shipboard ADCP data might be even more sensitive to the choice of bathymetry grids if barotropic tidal models are used to remove tides over deep oceanic topographic features where the mean flow is weak compared to the magnitude of barotropic tidal, or baroclinic currents. Realistic topography and associated flow complexity are also important factors for understanding sedimentary and ecological processes driven and maintained by flow–topography interaction.  相似文献   

8.
Abstract

An array of current meters was placed on the continental slope and rise for two months in the autumn of 1970. The bottom boundary layer was penetrated on the slope. On the smallest array scale, of the order of 1 kilometer, the array functioned as a directional internal wave antenna. Moving shoreward, the current spectra show strong suppression of the inertial peak and strong enhancement of the semidiurnal tide. The measured wave number spectra show that the tidal energy is almost completely baroclinic, and probably being generated in the region where the slope becomes “critical” for the tidal period. If this area is typical of worldwide conditions, a substantial fraction of the dissipation of surface tides takes place on the continental slopes by conversion to baroclinic waves. The bottom boundary layer has been modeled by an extension of the work of Ellison (1956) to a sloping boundary in a fluid of positive stability. An equivalent constant eddy coefficient has the value 3 cm2/sec as determined from the measurements.  相似文献   

9.
Evolution of a large-scale river plume is studied numerically using the Massachusetts Institute of Technology general circulation model. The model parameters were set close to those observed in the area of the Columbia River mouth. The fine-resolution grid along with the non-hydrostatic dispersion included in the model allowed for the reproduction of detailed inner plume structure, as well as a system of internal waves radiated from the plume’s boundary. It was found that not only first-mode but also second- and third-mode internal waves are radiated from the plume at the latest stages of its relaxation when the velocity of the front propagation drops below an appropriate wave phase speed of internal baroclinic mode. The model output shows that the amplitude of these high-mode waves is of the same order as the leading first-mode waves, which in combination with the specific vertical structure (location of the maximum structure function beyond the pycnocline layer) creates favourable conditions for the generation of shear instabilities. High-resolution model output also reveals evidence of a fine internal structure of the plume characterized by the presence of secondary fronts inside the plume and secondary internal wave systems propagated radially from the lift-off area to the outer boundary. These structures intensify the mixing processes within the propagating plume with predominance of the entrainment mechanism developing on the lower boundary between the plume’s body and underlying waters. The scheme of horizontal circulation in the plume was reproduced by the methodology of Lagrange drifters released near the mouth at different depths.  相似文献   

10.
Initially the development of shallow sea three-dimensional barotropic tidal models is briefly reviewed with a view to determining what were the key measurements that allowed progress in this field and rigorous model validation. Subsequently this is extended to a brief review of baroclinic tidal models to try to determine a “way forward” for baroclinic model development. The difficulty of high spatial variability, and wind influence are identified as possibly important issues that must be considered in validating baroclinic tidal models. These are examined using a three-dimensional unstructured grid model of the M2 internal tide on the shelf edge region off the west coast of Scotland. The model is used to investigate the spatial variability of the M2 internal tide, and associated turbulence energy and mixing in the region. Initial calculations are performed with tidal forcing only, with subsequent calculations briefly examining how the tidal distribution is modified by down-welling and up-welling favourable winds. Calculations with tidal forcing only, show that there is significant spatial variability in the internal tide and associated mixing in the region. In addition, these are influenced by wind effects which may have to be taken into account in any model validation exercise. The paper ends by discussing the comprehensive nature of data sets that need to be collected to validate internal tidal models to the same level currently attained with three dimensional barotropic tidal models.  相似文献   

11.
Net sediment transport in tidal basins is a subtle imbalance between large fluxes produced by the flood/ebb alternation. The imbalance arises from several mechanisms of suspended transport. Lag effects and tidal asymmetries are regarded as dominant, but defined in different frames of reference (Lagrangian and Eulerian, respectively). A quantitative ranking of their effectiveness is therefore missing. Furthermore, although wind waves are recognized as crucial for tidal flats’ morphodynamics, a systematic analysis of the interaction with tidal mechanisms has not been carried out so far. We review the tide-induced barotropic mechanisms and discuss the shortcomings of their current classification for numerical process-based models. Hence, we conceive a unified Eulerian framework accounting for wave-induced resuspension. A new methodology is proposed to decompose the sediment fluxes accordingly, which is applicable without needing (semi-) analytical approximations. The approach is tested with a one-dimensional model of the Vlie basin, Wadden Sea (The Netherlands). Results show that lag-driven transport is dominant for the finer fractions (silt and mud). In absence of waves, net sediment fluxes are landward and spatial (advective) lag effects are dominant. In presence of waves, sediment can be exported from the tidal flats and temporal (local) lag effects are dominant. Conversely, sand transport is dominated by the asymmetry of peak ebb/flood velocities. We show that the direction of lag-driven transport can be estimated by the gradient of hydrodynamic energy. In agreement with previous studies, our results support the conceptualization of tidal flats’ equilibrium as a simplified balance between tidal mechanisms and wave resuspension.  相似文献   

12.
A three-level, -plane, filtered model is used to simulate the Northern Hemisphere summer monsoon. A time-averaged initial state, devoid of sub-planetary scale waves, is integrated through 30 days on a 5° latitude-longitude grid. Day 25 through day 30 integrations are then repeated on a 2.5° grid. The planetary-scale waves are forced by time-independent, spatially varying diabatic heating. Energy is extracted via internal and surface frictional processes. Orography is excluded to simplify synoptic-scale energy sources.During integration the model energy first increases, but stabilizes near day 10. Subsequent flow patterns closely resemble the hemisphere summer monsoon. Climatological features remain quasi-stationary. At 200 mb high pressure dominates the land area, large-scale troughs are found over the Atlantic and Pacific Oceans, the easterly jet forms south of Asia, and subtropical jets develop in the westerlies. At 800 mb subtropical highs dominate the oceans and the monsoon trough develops over the Asian land mass. The planetary scales at all levels develop a realistic cellular structure from the passage of transient synoptic-scale features, e.g., a baroclinic cyclone track develops near 55°N and westward propagating waves form in the easterlies.Barotropic redistribution of kinetic energy is examined over a low-latitude zonal strip using a Fourier wave-space. In contrast to higher latitudes where the zonal flow and both longer and shorter waves are fed by barotropic energy redistribution from the baroclinically unstable wavelengths, the low-latitude waves have a planetary-scale kinetic energy source. Wave numbers 1 and 2 maintain both the zonal flow and all shorter scales via barotropic transfers. Transient and standing wave processes are examined individually and in combination.Wave energy accumulates at wave numbers 7 and 8 at 200 mb and at wave number 11 in the lower troposphere. The 800-mb waves are thermally indirect and in the mean they give energy to the zonal flow. These characteristics agree with atmospheric observation. The energy source for these waves is the three wave barotropic transfer. The implications of examining barotropic processes in a Fourier wave-space, vice the more common approach of separating the flow into a mean plus a deviation are discussed.  相似文献   

13.
《国际泥沙研究》2023,38(5):629-642
Sand waves of approximately 2 m in height were observed to migrate nearly 40 m with counterclockwise rotation between two bathymetric surveys performed three months apart near the southeastern corner of Martha's Vineyard, Massachusetts. The region is characterized by strong tidal currents, intermittent energetic surface wave events, and shallow water with local depth ranging from 2 to 7 m. This study uses the process-based model, Delft3D, with a three-dimensional approach to examine the sand wave dynamics by incorporating surface waves, winds, currents, and bathymetric observations. The model successfully simulates sand wave migration in comparisons to observations. Model sensitivity analyses show that the sand wave migration reduces by 65% with the absence of the surface waves. The modeled sand wave migration speed is correlated with the tidal current Shields parameter, and sharp increases in migration speed occur when the wave-driven Shields parameter increases in response to energetic surface wave events. The combined effect of tides, surface waves, and bathymetry is the origin of the rotational aspect of the sand wave, using the Shields parameter as an indicator of tidal currents and surface wave influence on sand wave dynamics.  相似文献   

14.
Hans van Haren 《Ocean Dynamics》2012,62(8):1123-1137
During a period of 3?days, an accurate bottom-pressure sensor and a four-beam acoustic Doppler current profiler (ADCP) were mounted in a bottom frame at 23?m in a narrow sea strait with dominant near-rectilinear tidal currents exceeding 1?m?s?1 in magnitude. The pressure record distinguishes small and short surface waves, wind- and ferry-induced near-surface turbulence and waves, large turbulent overturns and high-frequency internal waves. Typical low-frequency turbulent motions have amplitudes of 50?N?m?2 and periods of about 50?s. Such amplitudes are also found in independent estimates of non-hydrostatic pressure using ADCP data, but phase relationships between these data sets are ambiguous probably due to the averaging over the spread of the slanted acoustic beams. ADCP's echo amplitudes that are observed in individual beams show much better phase correspondence with near-bottom pressure, whether they are generated near the surface (mainly air bubbles) or near the bottom (mainly suspended sediment). These 50-s motions are a mix of turbulence and internal waves, but they are not due to surface wave interactions, and they are not directly related to the main tidal flow. Internal waves are supported by stratification varying between extremely strong thin layer and very weak near-homogeneous stratification. They are driven by the main flow over 2-m amplitude sand-wave topography, with typical wavelengths of 150?m.  相似文献   

15.
Abstract

Tidal pressures and currents were measured with self‐contained capsules dropped to the sea floor for one month at distances of 175, 190, and 500 nautical miles from San Diego. These observations, together with a one‐week bottom pressure record by Filloux at 750 n miles, and three half‐week bottom current records by Isaacs et al, at intermediary distances, were analyzed for tidal components by cross‐correlation with a noise‐free reference time series. (For short records this method has some merit over classical tide analysis.) It was found that the tide decays seaward to e‐1 times the coastal amplitude over a distance of order 1000 km for the semidiurnal species, slower for the diurnal species. Tidal currents turn counterclockwise, and are polarized with maximum flow parrallel to shore in the direction of tidal propagation (320°T) at local high tide. The current amplitude is roughly 2 cm/sec for the semidiurnal component, 1 cm/sec for the diurnal component. Superimposed baroclinic tidal currents lead to poor signal: noise ratios (between 1:1 and 10:1) for the barotropic currents. In contrast, the ratio is typically 1000:1 for the bottom pressures and generally exceeds that for coastal tide stations of comparable duration. Published I.H.B. tidal constants for exposed California coastal stations indicate “upshore” (towards 320°T) propagation at 140 m/sec for semidiurnal tides. 214 m/sec for diurnal tides.

To interpret these diverse observations, we have computed the dispersion laws for all possible rotationally‐gravitationally trapped waves against a straight coast with shelf. Trapped solutions are conveniently portrayed in terms of a parameter μ such that ? = sin μ = iu/v and f = ‐ cos μ = η/v define the ellipticity and impedance of the wave motion, η, u and v being off‐shelf dimensionless elevation, normal‐to‐shore and longshore components of velocity, respectively. We then attempt to fit the observations by a superposition of the possible wave classes, all of the same tidal frequency: (a) a free Kelvin‐like edge wave with small μ (mostly trapped by rotation, but somewhat slowed by the shelf); (6) a free Poincare‐like leaky wave; and (c) a forced wave (the distortion of the sea bottom by the tide producing forces plays a significant role). The mod el can account for the main features of the observed tidal heights, and gives relative amplitudes at the coast of 54:16:4 cm for components a:b:c in the case of the semidiurnal tides, 21:24:9 cm for the diurnal tides. The results place a semidiurnal amphidrome about midway between San Diego and Hawaii. Tidal currents are not well fitted by the model, and there are problems associated with the separation of barotropic and baroclinic modes, and with the benthic boundary layer. Coastal energy dissipation is small in the sea under investigation, but a “ capacitive “ phase delay appears to be associated with Northern California harbors and inland waters.  相似文献   

16.
Incoherent internal tidal currents in the deep ocean   总被引:2,自引:0,他引:2  
Eleven months current meter observations from the deep Bay of Biscay were examined for the residual (incoherent internal tidal; icIT) signal, left after harmonic analysis using eight tidal constituents (large-scale barotropic or coherent baroclinic signal) within the semidiurnal band. This residual signal comprised 30% of the total tidal kinetic energy and, due to its flat spectral appearance, it was responsible for typically 5–7 days intermittency. Although icIT was part of the red noise internal wave band continuum, it was not attributable to instrumental noise. It consisted of quasi-harmonics at non-tidal harmonic frequencies having amplitudes larger than N2, the third largest semidiurnal tidal constituent. It is suggested that the kinetic energy at these non-tidal frequencies reflects interaction between semidiurnal tidal motions and the slowly varying background conditions.Responsible Editor: Roger Proctor  相似文献   

17.
Abstract

The subject is reviewed from the viewpoints of theory, internal tide and wave structure and their implications.

A wider theoretical context suggests scope for further investigation of natural or nearly-trapped forms above the inertial frequency.

Although internal tides in many locations are observed to have first-mode vertical structure, higher modes are seen offshore from shallow shelf-break forcing and for particular Froude numbers, and may be expected locally near generation. Bottom intensification is often observed where the sea floor matches the characteristic slope. Solitons form from internal tides of large amplitude or at large changes of depth.

Internal tides and solitons are observed also at many sills and in straits, and to intensify in canyons.

Non-linear effects of the waves, especially solitons, include the conveyance of water, nutrients, ‘‘mixing potential'’ etc. away from their source to other locations, and the generation of mean currents. The waves transfer energy and possibly heat between the ocean and shelf, may be a source of medium frequency waves on the shelf (periods of minutes) and can contribute to interior mixing and overturning, bottom stirring and sediment movement.  相似文献   

18.
Observations of internal wave current fluctuations at a site on the European continental shelf are described. These have revealed current ‘pulses’ of regular tidal (M2) phase which may be associated with internal tides generated at the shelf-edge. Current ‘pulses’ have been observed with amplitudes of 30 to 40 cm s?1 superimposed on peak spring tidal currents of the order 60 to 70 cm s?1. The measurements have shown that these fluctuations extended throughout the bottom mixed layer to within at least 2 m of the sea bed where they may play an important role in modifying sediment transport rates.  相似文献   

19.
A cross-sectional model of an idealised constant depth gulf with a sill at its entrance, connected to a deep ocean, is used to examine the barotropic and baroclinic response of the region to wind forcing. The role of the oceanic boundary condition is also considered. Calculations show that in the case of a tall sill, where the pycnocline intersects the sill, the baroclinic response of the gulf is similar to that of a lake, and internal waves cannot radiate energy out of the gulf. The barotropic response shows free surface oscillations, with nodes located close to the centre of the oceanic basin and entrance to the gulf, with associated barotropic resonant periods. As the sill height is reduced, baroclinic wave energy is radiated from the gulf into the ocean, and the form of the baroclinic response changes from a standing wave (tall sill) as in a lake to a progressive wave (no sill). The location of sea surface elevation nodes and resonant periods changes as the sill height is reduced. Calculations of the barotropic resonant periods with and without stratification could not determine if they were influenced by the presence of stratification, although published analytical theory suggests that they should be able to when energy is lost from the gulf by internal wave radiation. This inability to detect changes in barotropic resonant period due to stratification effects is due to the small change in resonant frequency produced by baroclinic effects, as shown by analytical results, and the broad peak nature of the computed resonant frequency. In the case of a closed offshore boundary (an offshore island), there is a stronger and narrower energy peak at the resonant frequency than when a barotropic radiation condition is applied. However, the influence of stratification upon the resonant frequency could not be accurately determined. Although the offshore boundary was well removed from the gulf to such an extent that any baroclinic waves reflected from it could not reach the gulf within the integration period, it did, however, slightly influence the gulf baroclinic response due to its influence on the barotropic response.  相似文献   

20.
A high-resolution hybrid data assimilative (DA) modeling system is adapted to study the M2 barotropic tidal characteristics and dynamics in the Bohai and Yellow Seas. In situ data include tidal harmonics extracted from both coastal sea level and bottom pressure observations. The hybrid DA system consists of both forward and inverse models. The former is three-dimensional, finite-difference, nonlinear Regional Ocean Modeling System (ROMS). The latter is a three-dimensional, linearized, frequency-domain, finite-element model TRUXTON. The DA system assimilates in situ observations via the inversion of the barotropic tidal open boundary conditions (OBCs). Model skill is evaluated by comparing misfits between the observed and modeled tidal harmonics. The assimilation scheme is found effective and efficient in correcting the tidal OBCs, which in turn improves ROMS tidal solutions. Up to 50% reduction of model/data misfits is achieved after data assimilation. M2 co-tidal maps constructed from the posterior (data assimilative) ROMS solutions agree well with observational analysis of (Fang et al. 2004). Detailed analyses on tidal mixing, residual current, energy flux, dissipation, and momentum term balance dynamics are performed for M2 constituent, revealing complex M2 tidal characteristics in the study region and the important role of coastal geometry and topography in affecting regional tidal dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号