首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short-term periodicities of solar activity were studied. To perform the study, a north-south asymmetry time series was constructed by using the northern and the southern hemisphere flare index values for solar cycle 22. The statistical significance of this time series was calculated. It indicates that in most of cases the asymmetry is highly significant during cycle 22. Power spectral analysis of this time series reveals a periodicity around 25.5 days, which was announced before as a fundamental period of solar activity (Bai and Sturrock, 1991). To investigate the time agreement between the two hemispheres, the phase distribution was studied and a phase shift of about 0.5 was found. An activity trend from the north to the south was found.  相似文献   

2.
In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North – South (N – S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East – West (E – W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N – S asymmetry is more significant then the E – W asymmetry.  相似文献   

3.
This paper presents the study of normalized north–south asymmetry, cumulative normalized north–south asymmetry and cumulative difference indices of sunspot areas, solar active prominences (at total, low (?40°) and high (?50°) latitudes) and Hα solar flares from 1964 to 2008 spanning the solar cycles 20–23. Three different statistical methods are used to obtain the asymmetric behavior of different solar activity features. Hemispherical distribution of activity features shows the dominance of activities in northern hemisphere for solar cycle 20 and in southern hemisphere for solar cycles 21–23 excluding solar active prominences at high latitudes. Cumulative difference index of solar activity features in each solar cycle is observed at the maximum of the respective solar cycle suggesting a cyclic behavior of approximately one solar cycle length. Asymmetric behavior of all activity features except solar active prominences at high latitudes hints at the long term periodic trend of eight solar cycles. North–south asymmetries of SAP (H) express the specific behavior of solar activity at high solar latitudes and its behavior in long-time scale is distinctly opposite to those of other activity features. Our results show that in most cases the asymmetry is statistically highly significant meaning thereby that the asymmetries are real features in the N–S distribution of solar activity features.  相似文献   

4.
《New Astronomy》2003,8(7):655-664
The paper presents the results of a study of the asymmetry of the solar active prominences (SAP) at low (≤40°) and high (≥50°) latitudes, respectively, from 1957 through 1998 (solar cycles 19–22). A quantitative analysis of the hemispheric distribution of the SAP is given. We found that the annual hemispheric asymmetry indeed exists at low latitudes, but strangely, a similar asymmetry does not seem to occur for SAPs at high latitudes. We found that the north–south (N–S) asymmetry of the solar active prominences at high latitudes is always north dominated during solar cycles 19–22 while the N–S asymmetry of the SAPs at low latitudes is shifted to a dominance in the southern hemisphere for solar cycle 21 and remains south dominated even in cycle 22. Thus, the hemispheric asymmetry of the solar active prominences at high latitudes in a cycle appears to have little connection with the asymmetry of the solar activity at low latitudes.  相似文献   

5.
A study on north–south (N–S) asymmetry of different solar activity features (DSAF) such as solar proton events, solar active prominences [total, low (?40°) and high (?50°) latitudes], Hα flare indices, soft X-ray flares, monthly mean sunspot areas and monthly mean sunspot numbers carried out from May 1996 to October 2008. Study shows a southern dominance of DSAF during this period. During the rising phase of the cycle 23 the number of DSAF approximately equals on both, the northern and the southern hemispheres. But these activities tend to shift from northern to southern hemisphere during the period 1998–1999. The statistical significance of the asymmetry time series using a χ2-test of goodness of fit indicates that in most of the cases the asymmetry is highly significant, meaning thereby that the asymmetry is a real feature in the N–S distribution of DSAF.  相似文献   

6.
Verma  V.K. 《Solar physics》2000,194(1):87-101
The paper presents the results of a study of the distribution and asymmetry of solar active prominences (SAP) for the period 1957–1998 (solar cycles 19–23). The east-west (E-W) distribution study shows that the frequency of SAP events in the 81–90° slice (in longitude) near the east and west limbs is up to 10 times greater than in the 1–10° slice near the central meridian of the Sun. The north-south (N-S) latitudinal distribution shows that the SAP events are most prolific in the 11–20° slice in the northern and southern hemispheres. Further, the E-W asymmetry of SAP events is not significant. The N-S asymmetry of SAP events is significant and it has no relation with the solar maximum year or solar minimum year during solar cycles. Further, the present study also shows that the N-S asymmetry for cycles 19–23 follows and confirms the trend of N-S asymmetry cycles as reported by Verma (1992).  相似文献   

7.
A possible connection between solar radio emission from 1.0 to 9.4 GHz and the interplanetary sector boundaries has been previously reported in the literature. The present research does not support the previous work as expected. The 9.1 cm activity appears to be organized around sector boundaries only in a very limited sense in that the distribution of very strong active regions peaks near the –/+ boundaries. However, this phenomenon is only observed during the most active part of the solar cycle. A peculiar asymmetry is found regarding the length of the positive and negative sectors.  相似文献   

8.
In the present study, the north–south asymmetry of filaments in solar cycles 16–21 is investigated with the use of the solar filaments observed at the Observatoire de Paris, Section de Meudon from March 1919 to December 1989. Filament activity is found regularly dominated in each of cycles 16–21 in the same hemisphere as that inferred by sunspot activity, and it is found to run in a different asymmetrical behavior at different latitudinal bands, suggesting that the north–south asymmetry of filament activity should be a function of latitudes. The regularity on the north–south asymmetry of sunspot activity given by Li et al. (2002b) is demonstrated by filament activity. The periods in the north–south asymmetry of solar filament activity are 9.13, and 12.8 years without the solar cycle found.  相似文献   

9.
Duchlev  Peter I. 《Solar physics》2001,199(1):211-215
The present paper estimates the long-term variation of the north-south asymmetry of long-lived solar filaments from Meudon's catalogues during the period 1919–1989. A long-time period of the filament asymmetry variation of about 11 solar cycles was found by using the cumulative index for the filament north-south asymmetry. This estimation is very close to the long-time variation period of the north-south asymmetry of solar activity obtained by means of a spectral analysis.  相似文献   

10.
In this paper, the north?Csouth (N?CS) asymmetry of the polar faculae at relatively low (RLLs), relatively high (RHLs) as well as total latitudes (TLs) respectively, are investigated. It is found that (1) the polar faculae behave in a different asymmetrical way at different latitudinal bands; (2) the asymmetry of solar activity may be a function of latitudes, which is present not only in the low-latitude solar activity but also in the high-latitude solar activity; (3) the N?CS asymmetry of the polar faculae at TLs depends on that at RHLs, and the asymmetry of the polar faculae at RLLs only plays a modulatory role.  相似文献   

11.
The north – south (N – S) asymmetry of solar activity is investigated by using the data on coronal green-line brightness and total number and total area of sunspots over the period of 1939  –  2001. Typical time variations of the N – S asymmetry are found to be consonant in these indices. Quasi-biennial oscillations (QBO) of solar activity are well recognizable in the N – S asymmetry of the examined indices. Moreover, the QBO are much better manifested in the N – S asymmetry of the individual indices than in the original (N plus S) indices. The time variations of relative QBO power are synchronous for the N – S asymmetry of various solar activity indices whereas such a synchronization is weaker for the indices themselves. It is revealed that the relative QBO power found in the N – S asymmetry of the studied indices has a negative correlation with the value of the N – S asymmetry itself. The findings indicate that the N – S asymmetry should be regarded as a fundamental phenomenon of solar activity similarly manifested in different activity indices. These findings should be taken into account when any dynamo theory of solar activity is constructed.  相似文献   

12.
Lewis  D.J.  Simnett  G.M. 《Solar physics》2000,191(1):185-200
We have developed a non-subjective technique for recording the occurrences of coronal mass ejection (CME) in data recorded by the Large Angle Spectrometric Coronagraph experiment (LASCO) aboard the Solar and Heliospheric Observatory spacecraft (SOHO). We have found evidence for, and quantified, an asymmetry in the apparent longitudes at which mass ejections occurred during the first year of LASCO synoptic observations and coinciding with the 1996–1997 solar minimum. Throughout this period the solar surface could loosely be characterized as having both an active and a quiet hemisphere and the observed mass ejection asymmetry is seen to relate closely with the longitudes of most persistent disc activity. However, our best estimate for the centroid of the CME distribution is 45 deg to the west of the brightest regions visible in Fe 195 Å emission on the disc and in an area of reduced coronal emission. This corresponds to the location of a trans-equatorial extension of the northern coronal hole which persisted to some degree throughout the year and was directly associated with the most active region on the disc. We suggest that this indicates magnetic reconnection, which is necessary at the boundaries of coronal holes to maintain their quasi-rigid rotation above the differentially rotating photosphere, could play an important role in triggering the destabilization of nearby structures and result in the observed prevalence of mass ejections. We estimate that the events included in the study could contribute around 8% to the total solar mass loss through the solar wind (which is around 1014 kg day–1) and find a scale of asymmetry indicating that close to 70% of this mass is ejected from within a single hemisphere.  相似文献   

13.
从三方面概述了太阳活动不对称的进展;不对称性的特征及其演化行为、周期性和可能的解释。太阳活动的南北半球及东西半球人发布是不均匀的,且在南北半球上分布不对称;但目前仍无法确定东西半球分布不对称。在众多的解释太阳活动不对称的理论中,没有一种理论被广泛接受。对将来开展太阳活动不对称性研究工作提出了一些看法。  相似文献   

14.
The latitudinal distribution of sunspot groups over a solar cycle is investigated. Although individual sunspot groups of a solar cycle emerge randomly at any middle and low latitude, the whole latitudinal distribution of sunspot groups of the cycle is not stochastic and, in fact, can be represented by a probability density function of the distribution having maximum probability at about 15.5°. The maximum amplitude of a solar cycle is found to be positively correlated against the number of sunspot groups at high latitude (35°) over the cycle, as well as the mean latitude. Also, the relation between the asymmetry of sunspot groups and its latitude is investigated, and a pattern of the N-S asymmetry in solar activity is suggested.  相似文献   

15.
The space–time distribution of asymmetry in the area and total number of sunspot groups was considered over the time interval 1874–2009. The time behavior of the asymmetry in these indices of sunspot activity was shown to be similar on both small and large time scales. Spectral variation analysis (SVAN) was applied to study the spectral characteristics. Quasi–biennial oscillations (QBO) were revealed in the asymmetry of both indices under discussion. The SVAN diagrams for the asymmetry of the areas and numbers of sunspots in the range of QBO periods display pronounced similarity. In the activity indices per se, these effects are much weaker: the mutual correlation of the indices is lower, the QBO are less pronounced, and the similarity of the SVAN diagrams in the QBO range is absent. The effect of negative correlation between the QBO power and absolute value of the asymmetry over a long time interval was revealed: the increase in asymmetry is accompanied by a decrease in QBO amplitude regardless of which hemisphere is more active at the moment. This underlines the global nature of QBO and the relation of asymmetry to the quadrupole component of the solar large-scale magnetic field. The asymmetry is an independent fundamental characteristic of solar activity, which does not reduce to the classical characteristics of the 11-year cycle.  相似文献   

16.
The time variation and latitude dependence of the solar rotation are found using observational data on Hα filaments and compact magnetic features with different polarities during solar activity cycles 20 and 21 (1966–1985). Statistical analysis of the observational data shows that there is a north–south asymmetry in the rotation, both for the Hα filaments and for compact magnetic features (structures) with negative and positive polarities. The N-S asymmetry in the differential rotation of the Hα filaments and the compact magnetic features with both polarities shows up quite distinctly in solar activity cycles 20 and 21, but the asymmetry for the compact magnetic features with positive polarity is comparatively lower in cycle 21. The confidence level is lower the compact magnetic features with positive polarity than for the compact magnetic features with negative polarity.  相似文献   

17.
This paper reports the results of a study of the N-S asymmetry in the flare index using the results of Knoka (1985) combined with our results for the solar cycles 17 to the current cycle 22. By comparing the time-variation of the asymmetry curve with the solar activity variation of the 11-year cycle, we have found that the flare index asymmetry curve is not in phase with the solar cycle and that the asymmetry peaks during solar minimum. A periodic behaviour in the N-S asymmetry appears: the activity in one hemisphere is more important during the ascending part of the cycle whereas during the descending part the activity becomes more important in the other hemisphere. The dominance of flare activity in the southern hemisphere continues during cycle 22 and, according to our findings, this dominance will increase gradually during the following cycle 23.  相似文献   

18.
We investigate the structure of convective flows in the solar photosphere on subgranulation scales. The solar granulation pattern is reproduced by solving the inverse problem of nonequilibrium radiation transfer on the basis of the profiles of the neutral iron line λ 523.42 nm. The wave motions are excluded by the k-ω filtration. The line-of-sight velocity has an asymmetric distribution inside the convective flows in large granules (1.5″ and larger) in the lower photosphere and at the bottom of the middle photosphere. This asymmetry is weaker in the upper photosphere. For smaller flows the distribution is more symmetric at all heights. The asymmetry of the temperature distribution is less pronounced. Large convective flows were found to have a fine structure: they are fragmentized into several smaller flows. The fine structure of large flows and spatial smearing are responsible for the observed asymmetry of the convection velocity distribution inside flows.  相似文献   

19.
Solar long-term activity runs at high latitudes in three ways: (i) in phase with solar long-term activity at low latitudes; (ii) in antiphase with solar long-term activity at low latitudes and (iii) does not follow either (i) or (ii), and mainly occurs around the times of maxima of (i) and (ii). In the present study, we investigate the north–south asymmetry of solar activity at high latitudes and found the following. In Case (i), high-latitude filament activity, for example, is inferred to have the same dominant hemisphere as low-latitude activity in a cycle. In Case (ii), the north–south asymmetry of high-latitude activity, represented by both the polar faculae and the Sun's polar field strength, is usually different from that of low-latitude activity in a sunspot cycle, and even in a cycle of high-latitude activity (polar faculae and the Sun's polar field strength), suggesting that the north–south asymmetry of solar activity at high latitudes should have little or no connection with that of low latitudes. In Case (iii), the north–south asymmetry of solar activity at high latitudes (polar flares) should have little connection with that at low latitudes as well. The observed magnetic field at high latitudes is inferred to consist of two components: one comes from the emergence of the magnetic field from the Sun's interior and the other comes from the drift of the magnetic activity at low latitudes.  相似文献   

20.
Long-term variations in north-south asymmetry of solar activity   总被引:1,自引:0,他引:1  
We present a new set of data on relative sunspot number (total, northern hemisphere, and southern hemisphere), taken for the 37-yr period 1947 to 1983; this constitutes a particularly coherent and consistent set of data, taken by the same observer (Hisako Koyama) using the same observing instrument. These data are combined with earlier data (White and Trotter, 1977) on the variation of sunspot areas for both solar hemispheres from 1874 to 1971. The combined data, covering 110 years and 10 solar cycles, are examined for periodicity in solar activity north-south asymmetry. We show that, in general, northern hemisphere activity, displayed as either An/(An + As) or Rn/(Rn + Rs), peaks about two years after sunspot minimum. This peak is greater during even cycles, pointing to a 22-yr periodicity in north-south asymmetry in solar activity, suggesting that the asymmetry is related to the 22-yr solar magnetic cycle. We demonstrate that the largest and most protracted period of northern-hemisphere activity excess in the last 110 years has occurred from 1959 to 1970; we show that there is a strong correlation between northern activity excess and a cosmic-ray density gradient perpendicular to the ecliptic plane, pointing southward, which is evident in cosmic-ray diurnal variation data from the Embudo underground cosmic-ray telescope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号