首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modelling the geomagnetic field   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
Summary. Horizontal and vertical intensity data, obtained between 1957.0 and 1961.0 at 69 observatories, are analysed to determine the worldwide distribution of the annual variation of the geomagnetic field. Only data observed near local midnight are used, to avoid the small, but significant contamination from Sq. Over most of the world the variation is found to be small, with a clear dependence on latitude, but near the poles it is larger and more erratic. The non-polar variation is subjected to spherical harmonic analysis and separated into parts of internal and external origin. The polar variations are shown to be consistent with a north—south oscillation of the mean position of the auroral electrojets during the year. It is suggested that, with the exception of the polar effect, the annual variation is not due to ionospheric currents (as was hitherto believed), but results from an annual variation in the latitude of the ring current.  相似文献   

4.
5.
Recent remote sensing analyses and field studies have shown that Bajada del Diablo, in Argentina, is a new crater-strewn field. Bajada del Diablo is located in a remote area of Chubut Province, Patagonia. This amazing strewn field contains more than 100 almost circular, crater-type structures with diameters ranging from 100 to 500 m in width and 30 to 50 m in depth. It is composed of three separated impact crater fields, which formed simultaneously. The impact was upon a Miocene basaltic plateau and Pliocene–Early Pleistocene pediments. The original crater field (60 km2) was later eroded by Late Pleistocene fluvial processes; thus, three major, separate areas were defined. Due to the erosional processes that have affected the area, it is difficult to determine yet if the crater field has a classic elliptical distribution. Crater structures are similar in target rocks, although showing different response and morphology in relation to rock type. They are simple rings, bowl-shaped with raised rimrock. Basaltic boulders have been deposited as a ring-shaped pile and the ejecta are found toward the NE flanks. The craters present a hummocky bottom, with dry ponds and lakes in the center, but they do not show raised central peaks. The rocks within the craters have strong and stable magnetic signature. No meteorite fragments or other diagnostic landmarks have been found yet. The craters have been partially filled in by debris flows from the rim and windblown sands in recent times. The origin of these crater fields may be related to multiple fragmentation of one asteroid that broke up before impact, perhaps traveling across the space as a rubble pile. Alternatively, multiple collisions of comet fragments could explain the formation of these crater fields. Based on field geological and geomorphological data, the age of this event is estimated to be bracketed between Early Pleistocene and Late Pleistocene (i.e., 0.78–0.13 Ma ago).  相似文献   

6.
7.
8.
Satellite magnetometers sometimes pass through regions of plasma, such as the terrestrial ionosphere, where the ionization is large enough that some of the original ambient field is excluded from the plasma. This reduction of field inside the plasma region comes from the 'diamagnetic' effect of the charged particles in their helical trajectory around the magnetic field lines. The (container of the) magnetometer will exclude the plasma, and a simple-minded approach, treating the ionosphere in the same way as for a conventional diamagnetic fluid, predicts that the field seen by the magnetometer will be somewhat larger than the (reduced) field in the plasma. However, the 'diamagnetic' properties of the ionosphere are quite different from those of a conventional diamagnetic. In particular, there is a 'reflection' of the ionospheric charged particles at the surface of the magnetometer, and the overall effect is that the magnetometer does actually measure the field present in the plasma before the magnetometer is inserted. Similarly, any leakage fields from the magnetometer have no effect in the magnetosphere.  相似文献   

9.
Li  Guodong  Zhang  Junhua  Mirzaei  Parham A.  Ding  Shengyan  Ding  Yapeng  Liu  Man 《地理学报(英文版)》2020,30(12):2015-2032
Journal of Geographical Sciences - Land use and land cover (LULC) alteration has changed original energy balance and heat fluxes between land and atmosphere, and thus affects the structure...  相似文献   

10.
11.
12.
13.
Rectangular polynomial analysis of the regional geomagnetic field   总被引:2,自引:0,他引:2  
The method of rectangular polynomial analysis (RPA) is developed and refined to represent a curl-free potential field of internal origin. It is applied to annual mean values of the geomagnetic field from 42 European observatories. RPA is found to be an efficient means of representing the regional field, though less suitable for modelling the anomaly field.  相似文献   

14.
基于可达性与数据场的长三角经济区空间场能   总被引:1,自引:0,他引:1  
空间场能是区域发展"龙头"借助区域联系通道带动外围地区发展的抽象表达,可有效刻画区域发展格局与空间差异。借助ArcGIS软件平台,采用栅格成本加权距离法、k阶数据场等模型,综合测度了长三角经济区区域可达性与空间场能,并揭示了该区域空间场能的空间格局与演变特征。研究表明:①2000年以来,长三角经济区中心城市取得了长足发展,且总体倾于均衡发展;②区域可达性条件不断改善,3 h时间圈的平均通达距离由2000年的81km提高到2008年的122 km;③区域空间场能显著增长且空间分异性显著,分布结构由单核“Z”字型向“多极”网络状形态转变;④长三角经济区空间场能分布格局可适度划分为高场能区、较高场能区、一般场能区、较低场能区、低场能区等5大类型,并呈现出圈层状特征与"两极分化"特征。  相似文献   

15.
16.
Analysis of potential field data in the wavelet domain   总被引:15,自引:0,他引:15  
Various Green's functions occurring in Poisson potential field theory can be used to construct non-orthogonal, non-compact, continuous wavelets. Such a construction leads to relations between the horizontal derivatives of geophysical field measurements at all heights, and the wavelet transform of the zero height field. The resulting theory lends itself to a number of applications in the processing of potential field data. Some simple, synthetic examples in two dimensions illustrate one inversion approach based upon the maxima of the wavelet transform (multiscale edges). These examples are presented to illustrate, by way of explicit demonstration, the information content of the multiscale edges. We do not suggest that the methods used in these examples be taken literally as a practical algorithm or inversion technique. Rather, we feel that the real thrust of the method is towards physically based, spatially local filtering of geophysical data images using Green's function wavelets, or compact approximations thereto. To illustrate our first steps in this direction, we present some preliminary results of a 3-D analysis of an aeromagnetic survey.  相似文献   

17.
The modern geomagnetic field is usually expressed as a spherical harmonic expansion. Although the palaeomagnetic record is very incomplete in both space and time, sufficient data are available from a span of ages to generate time-averaged spherical harmonic field models with many degrees of freedom. Here three data sets are considered: directional measurements from lavas, inclination measurements from ocean sediments, and intensity measurements from lavas. Individual data are analysed, as well as site-averages, using the same methods that have been developed for the modern field, to give models for the past 5 Myr. The normal-polarity field model has an axial-dipole intensity similar to that of the modern-day field, whilst the equatorial-dipole component is very much smaller. The field is not axisymmetric, but shows flux concentrations at the core's surface under Canada and Siberia similar to those observed in the field over historical timescales. Tests on synthetic data show that it is unlikely that these similarities result from the overprinting of the palaeomagnetic field due to inadequate cleaning of the samples. The reverse-polarity field model does not show such obvious features, but this may be due to the sparsity of the data.
The patterns observed in the normal-polarity field, with persistent features in the northern hemisphere and a smooth southern hemisphere, could be explained if the present pattern of secular variation is typical of the past several million years. This would reveal itself as large variations over time in the direction of the magnetic vector in regions of high secular variation, with relatively little change over quieter regions. However, we have been unable to find any evidence for a geographical pattern of secular variation in the data.  相似文献   

18.
19.
Rotation of the geomagnetic field about an optimum pole   总被引:2,自引:0,他引:2  
Since 1693, when Halley proposed that secular change was the result of the westward drift of the main field, his simple model has undergone many refinements. These include different drift rates for dipole and non-dipole parts; separation into drifting and standing parts; latitudinal dependence of drift rate; northward drift of the dipole; and non-longitudinal rotations of the individual harmonics of the geomagnetic field. Here we re-examine the model of Malin and Saunders, in which the main field is rotated about an optimum pole which does not necessarily coincide with the geographical pole. The optimum pole and rotation angle are those that bring the main field for epoch T 1 closest to that for T 2 , as indicated by the coefficients of correlation between the spherical harmonic coefficients for the two epochs, after rotation. Malin and Saunders examined the pole positions and rates of rotation using data from 1910 to 1965, and noticed a number of trends. We show that these trends are confirmed by recent IGRF models, spanning the interval 1900–2000 and to degree and order 10. We also show that the effect of the level of truncation is small.  相似文献   

20.
A six-parameter statistical model of the non-dipole geomagnetic field is fitted to 2597 harmonic coefficients determined by Cain, Holter & Sandee (1990) from MAGSAT data. The model includes sources in the core, sources in the crust, and instrument errors. External fields are included with instrument errors. The core and instrument statistics are invariant under rotation about the centre of the Earth, and one of the six parameters describes the deviation of the crustal statistics from rotational invariance. The model treats the harmonic coefficients as independent random samples drawn from a Gaussian distribution. The statistical model of the core field has a correlation length of about 500 km at the core-mantle boundary, too long to be attributed to a white noise source just below the boundary layers at the top of the core. The estimate of instrument errors obtained from the statistical model is in good agreement with an independent estimate based on tests of the instruments (Langel, Ousley & Berbert 1982).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号