首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
ABSTRACT One-dimensional fluid advection-dispersion models predict differences in the patterns of mineralogical and oxygen isotope resetting during up- and down-temperature metamorphic fluid flow that may, in theory, be used to determine the fluid flow direction with respect to the palaeotemperature gradient. Under equilibrium conditions, down-temperature fluid flow is predicted to produce sharp reaction fronts that separate rocks with isobarically divariant mineral assemblages. In contrast, up-temperature fluid flow may produce extensive zones of isobarically univariant mineral assemblages without sharp reaction fronts. However, during contact metamorphism, mineral reaction rates are probably relatively slow compared with fluid velocities and distended reaction fronts may also form during down-temperature fluid flow. In addition, uncertainties in the timing of fluid flow with respect to the thermal peak of metamorphism and the increase in the variance of mineral assemblages due to solid solutions introduce uncertainties in determining fluid flow directions. Equilibrium down-temperature flow of magmatic fluids in contact aureoles is also predicted to produce sharp δ18O fronts, whereas up-temperature flow of fluids derived by metamorphic devolatilization may produce gradational δ18O vs. distance profiles. However, if fluids are channelled, significant kinematic dispersion occurs, or isotopic equilibrium is not maintained, the patterns of isotopic resetting may be difficult to interpret. The one-dimensional models provide a framework in which to study fluid-rock interaction; however, when some of the complexities inherent in fluid flow systems are taken into account, they may not uniquely distinguish between up- and down-temperature fluid flow. It is probably not possible to determine the fluid flow direction using any single criterion and a range of data is required.  相似文献   

2.
 Siliceous dolomites and limestones contain abundant retrograde minerals produced by hydration-carbonation reactions as the aureole cooled. Marbles that contained periclase at the peak of metamorphism bear secondary brucite, dolomite, and serpentine; forsterite-dolomite marbles have retrograde tremolite and serpentine; wollastonite limestones contain secondary calcite and quartz; and wollastonite-free limestones have retrograde tremolite. Secondary tremolite never appears in marbles where brucite has replaced periclase or in wollastonite-bearing limestones. A model for infiltration of siliceous carbonates by CO2-H2O fluid that assumes (a) vertical upwardly-directed flow, (b) fluid flux proportional to cooling rate, and (c) flow and reaction under conditions of local equilibrium between peak temperatures and ≈400 °C, reproduces the modes of altered carbonate rocks, observed reaction textures, and the incompatibility between tremolite and brucite and between tremolite and wollastonite. Except for samples from a dolomite xenolith, retrograde time-integrated flux recorded by reaction progress is on the order of 1000 mol fluid/cm2 rock. Local focusing of flow near the contact is indicated by samples from the xenolith that record values an order of magnitude greater. Formation of periclase, forsterite, and wollastonite at the peak of metamorphism also required infiltration with prograde time-integrated flux approximately 100–1000 mol/cm2. The comparatively small values of prograde and retrograde time-integrated flux are consistent with lack of stable isotope alteration of the carbonates and with the success of conductive thermal models in reproducing peak metamorphic temperatures recorded by mineral equilibria. Although isobaric univariant assemblages are ubiquitous in the carbonates, most formed during retrograde metamorphism. Isobaric univariant assemblages observed in metacarbonates from contact aureoles may not record physical conditions at the peak of metamorphism as is commonly assumed. Received: 19 September 1995 / Accepted: 14 March 1996  相似文献   

3.
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.  相似文献   

4.
A detailed petrological analysis of the marble assemblages observed within the M2 metamorphic complex on Naxos is presented. Two distinct periods of mineral growth are documented; the first is associated with prograde M2 metamorphism and the second with retrograde M2 metamorphism occurring during ductile extensional thinning of the complex. The textural and miner-alogical characteristics and the carbon and oxygen isotope compositions of each generation are described, and the P-T-X CO 2 conditions at which these two mineral generations were stable, and the compositions of the fluids present during metamorphism are characterised. Whereas the low variance and stable isotope compositions of prograde siliceous dolomite assemblages are consistent with internally buffered fluid evolution, the retrograde mineral generation is shown to have grown as a result of the infiltration of a water-rich fluid phase that transported silica, Al2O3, Na2O and FeO into the host rocks. This observation, together with the stable isotope compositions of the retrograde calcite, and the fact that occurrences of veins of this type are limited to marbles in the highest grade areas (T>600° C) of the metamorphic complex, suggests that the fluids responsible for vein formation were generated during the crystallisation of melts as the metamorphic complex cooled from peak temperatures. The existence of this second generation of minerals has significant implications for previous studies of heat transport by fluid flow on Naxos, because many of the unusually low 18O compositions of pelites at high grades may be ascribable to the effects of interaction with retrograde M2 fluids, rather than with prograde fluids.  相似文献   

5.
This contribution addresses contact metamorphism and fluid flow in calcareous rocks of the Neoproterozoic Shaler Supergroup on Victoria Island, Arctic Canada. These processes occurred due to intrusion of gabbroic sills and dykes at c. 720 Ma during the Franklin magmatic event, which was associated with the break‐up of Rodinia. The intrusive sheets (sills and dykes) are a few metres to ~50 m thick. Metasedimentary rocks were examined in three locations with very good exposures of vertical dykes feeding horizontal sills, the Northern Feeder Dyke (NFD) complex, the Southern Feeder Dyke (SFD) complex and the Uhuk Massif. In the NFD and SFD complexes, protoliths were limestones and dolostones with minor silicates, and at the Uhuk Massif, the protoliths were silty dolostones. At the time of magma emplacement, these locations were at depths of 1–4 km. The widths of contact aureoles are only several decametres wide, commensurate with thicknesses of the dykes and sills. Splays of tremolite mark incipient metamorphism. Highest grade rocks in the NFD and SFD complexes contain the prograde assemblage diopside + phlogopite whereas at Uhuk they contain the assemblage vesuvianite + garnet + diopside. The assemblages are successfully modelled with TX(CO2)fluid pseudosections that suggest achievement of CO2‐rich fluid compositions due to early decarbonation reactions, followed by influx of aqueous fluids after peak metamorphism. Rapid heating of host rocks and short near‐peak temperature intervals are demonstrated by the prevalent morphology of diopside as radial splays of acicular crystals that appear to pseudomorph tremolite and by incomplete recrystallization of calcite in marbles. Calcsilicates in the roof of one sill at Uhuk experienced metasomatic influx of Fe that is evidenced by nearly pure andradite rims on grossular garnet. Vesuvianite, which overgrew the grossular portions of garnet, also contains ferric iron. Vesuvianite was partially consumed during retrograde growth of serpentine and andradite. The occurrence of serpentine in high‐grade portions of aureoles is consistent with eventual levelling‐off of temperatures between 350 and 400 °C, an inference that is supported by modelled conductive heat transfer from the cooling magma sheets. Focused fluid flow near intrusion‐wall rock contacts is demonstrated by narrow zones of anomalously low δ13C and δ18O values of carbonate minerals. Although the up to 5‰ decrease of both δ13C and δ18O values from sedimentary values is much smaller than is typical for calcsilicate aureoles around large plutons, it is greater than what could have been achieved by decarbonation alone. The decrease in δ13C is attributed to fluid‐mediated exchange with organic low‐13C carbon that is dispersed through the unmetamorphosed rocks and the decrease in δ18O is attributed to fluid‐mediated isotopic exchange with the gabbroic intrusive sheets. This study shows that when gabbroic sills and dykes intrude a sedimentary basin, (i) contact aureoles are likely to be narrow, only on the scale of several decametres; (ii) short high‐temperature regimes prevent achievement of equilibrium metamorphic textures; and (iii) TX(CO2)fluid paths in calcareous contact aureoles are likely to be complex, reflecting a transition from prograde decarbonation reactions to influx of aqueous fluids during cooling.  相似文献   

6.
Contact metamorphism of siliceous dolomite in the southern partof the metamorphic aureole of the Alta stock (Utah, USA) producedthe prograde isograd sequence: talc (Tc), tremolite (Tr), forsterite(Fo), and periclase (Per). Calcite (Cc)–dolomite (Do)geothermometry and phase equilibria define a general progradeT–X(CO2) path of decreasing X(CO2) with rising temperaturefor the dolomite. High-variance assemblages typify the aureole.Per + Cc and Fo + Cc + Do characterize the inner aureole (Perand Fo zones), and Tr + Do + Cc and Tc + Do + Cc are widespreadin the outer aureole (Tr and Tc zones). Low-variance assemblagesare rare and the thickness of reaction zones (coexisting reactantand product minerals) at the isogradic reaction fronts are narrow(tens of metres or less). The mineral assemblages, calculatedprogress of isograd reactions, and the prograde T–X(CO2)path all indicate that massive dolomite was infiltrated by significantfluxes of water-rich fluids during prograde metamorphism, andthat the fluid flow was down-temperature and laterally awayfrom the igneous contact. Fluid infiltration continued throughat least the initial retrograde cooling of the periclase zone.Down-T fluid flow is also consistent with the results of Cc–Dogeothermometry and patterns of 18O depletion in this area. Theclose spatial association of reacted and unreacted chert nodulesin both the tremolite and talc zones plus the formation of tremoliteby two reactions indicate that the outer aureole varied in X(CO2),and imply that fluid flow in the outer aureole was heterogeneous.The occurrence of dolomite-rich and periclase (brucite)-absent,high-  相似文献   

7.
Previous models of hydrodynamics in contact metamorphic aureoles assumed flow of aqueous fluids, whereas CO2 and other species are also common fluid components in contact metamorphic aureoles. We investigated flow of mixed CO2–H2O fluid and kinetically controlled progress of calc‐silicate reactions using a two‐dimensional, finite‐element model constrained by the geological relations in the Notch Peak aureole, Utah. Results show that CO2 strongly affects fluid‐flow patterns in contact aureoles. Infiltration of magmatic water into a homogeneous aureole containing CO2–H2O sedimentary fluid facilitates upward, thermally driven flow in the inner aureole and causes downward flow of the relatively dense CO2‐poor fluid in the outer aureole. Metamorphic CO2‐rich fluid tends to promote upward flow in the inner aureole and the progress of devolatilization reactions causes local fluid expulsion at reacting fronts. We also tracked the temporal evolution of P‐T‐XCO2conditions of calc‐silicate reactions. The progress of low‐ to medium‐grade (phlogopite‐ to diopside‐forming) reactions is mainly driven by heat as the CO2 concentration and fluid pressure and temperature increase simultaneously. In contrast, the progress of the high‐grade wollastonite‐forming reaction is mainly driven by infiltration of chemically out‐of‐equilibrium, CO2‐poor fluid during late‐stage heating and early cooling of the inner aureole and thus it is significantly enhanced when magmatic water is involved. CO2‐rich fluid dominates in the inner aureole during early heating, whereas CO2‐poor fluid prevails at or after peak temperature is reached. Low‐grade metamorphic rocks are predicted to record the presence of CO2‐rich fluid, and high‐grade rocks reflect the presence of CO2‐poor fluid, consistent with geological observations in many calc‐silicate aureoles. The distribution of mineral assemblages predicted by our model matches those observed in the Notch Peak aureole.  相似文献   

8.
The contact aureole developed in siliceous carbonates surrounding the Beinn an Dubhaich granite, Skye, shows textural and stable isotope evidence for infiltration of aqueous fluids during both prograde and retrograde metamorphism. Strongly depleted isotope compositions of reaction-product calcite correlate with high silica and fluorine contents, demonstrating a strong link between isotopic alteration and metasomatism by fluids with a significant magmatic component, even at the margins of the aureole. The oxygen and carbon isotope compositions of the carbonates form a linear cluster with a positive slope of about five, consistent with the depletion of isotope compositions by the infiltration of magmatic and/or meteoric fluids. Rayleigh fractionation during devolatilization played a minor role in determining the final isotope composition. Stable isotope compositions of coexisting calcite–dolomite pairs show varying amounts of isotopic disequilibrium, which correlate with the inferred fluid infiltration mechanism. Much of the calcite in dolostones is the product of infiltration-driven reactions along fractures, and is greatly depleted isotopically relative to the host dolomite, especially at talc grade. At higher grades the calcite–dolomite fractionation is smaller, probably due to both increased fluid–rock interaction and a greater tendency for fluid infiltration to be pervasive on the grain-scale. Limestones generally show near-equilibrium fractionation of oxygen and carbon owing to the overwhelming compositional influence of the host calcite. Veins formed during late-stage hydrothermal circulation have strongly 18O-depleted compositions relative to the host rock. No small-scale spatial patterns to the isotopic depletion were observed, but the extent of fluid infiltration was greatest in the west of the aureole. Fluid infiltration was clearly highly heterogeneous, with no evidence of a consistent flow direction. It is not possible to determine fluid fluxes or flow directions from one-dimensional flow models based on continuum flow in the Beinn an Dubhaich aureole.  相似文献   

9.
Summary The intrusion of the Lower Permian Los Santos-Valdelacasa granitoids in the Los Santos area caused contact metamorphism of Later Vendian-Lower Cambrian metasediments. High grade mineral assemblages are confined to a 7 km wide contact aureole. Contact metamorphism was accompanied by intense metasomatism and development of skarns, and it generated the following mineral assemblages: diopside, forsterite, phlogopite (±clintonite) and humites and spinel-bearing assemblages or diopside, grossular, vesuvianite ± wollastonite in the marbles, depending on the bulk rock composition. Cordierite, K-feldspar, andalusite and, locally, sillimanite appear in the metapelitic rocks. Mineral assemblages of marbles and hornfelses indicate pressure conditions ranging from 0.2 to 0.25 GPa and maximum temperatures between 630 and 640 °C. 13C and 18O depletions in calcite marbles are consistent with hydrothermal fluid–rock interaction during metamorphism. Calcites are depleted in both 18O (δ18O = 12.74‰) and 13C (δ13C = −5.47‰) relative to dolomite of unmetamorphosed dolostone (δ18O = 20.79‰ and δ13C = −1.52‰). The δ13C variation can be interpreted in terms of Rayleigh distillation during continuous CO2 fluid removal from the carbonates. The δ18O values reflect hydrothermal exchange with an externally derived fluid. Microthermometric analyses of fluid inclusions from vesuvianite indicate that the fluid was water dominated with minor contents of CO2 (±CH4 ± N2) suggesting a metamorphic origin. Fluorine-bearing minerals such as chondrodite, norbergite and F-rich phlogopite indicate that contact metamorphism was accompanied by fluorine metasomatism. Metasomatism was more intense in the inner-central portion of the contact aureole, where access to fluids was extensive. The irregular geometry of the contact with small aplitic intrusives between the metasediments and the Variscan granitoids probably served as pathways for fluid circulation.  相似文献   

10.
Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ∼5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ18O and ±0.71‰ for δ13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ18O and 0.10-0.29‰ for δ13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ18O (up to 9.4‰), intercrystalline inhomogeneity in δ18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ18O and δ13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively rapid oxygen isotope diffusion in calcite, intracrystalline inhomogeneities in δ18O likely represent partial equilibration between calcite and fluid during retrograde metamorphism. Calcite is in oxygen isotope exchange equilibrium with forsterite in one of four analyzed samples, in equilibrium with dolomite in none of six analyzed samples, and in equilibrium with quartz in neither of two analyzed samples. There are no samples of contact metamorphic rock with analyzed reactants and products of an arrested metamorphic reaction that are in oxygen isotope equilibrium with each other. The degree of departure from equilibrium in analyzed samples is variable and is often related, at least in part, to alteration of δ18O of calcite during retrograde fluid-rock reaction. In situ sub-grain-scale carbon and oxygen isotope analyses of minerals are advisable in the common applications of stable isotope geochemistry to metamorphic petrology. Correlation of sub-mm scale stable isotope data with imaging will lead to improved understanding of reaction kinetics, reactive fluid flow, and thermal histories during metamorphism.  相似文献   

11.
Marbles from the Pohorje area in Slovenia are investigated by mineralogical-petrographical analyses of thin sections as well as by cathodoluminescence in order to detect their local variability in texture and mineral assemblages. The CL colours observed in a cold cathode device are related to the manganese contents. An attempt is made to relate the textures seen under CL to mineral reactions during the process of metamorphism. The predominantly calcite marbles from Pohorje exhibit orange luminescence with some dolomite lenses with red luminescence. The typical mineral assemblages are calcite+tremolite+phlogopite or calcite+dolomite+tremolite+phlogopite. Therefore, the estimated temperature from the stability of mineral assemblage is assumed at approximately 500 °C.  相似文献   

12.
Although regional mineral zoning in pelitic rocks has been described in numerous metamorphic terrains, relatively little is known about zoning in carbonate-bearing rocks. Regional metamorphism has resulted in a distinctive sequence of mineral zones in calcareous rocks (containing Fe, K and Al) of the Lessard Formation in the Bishop Corners-Madoc area, Grenville Province, Canada. The variation in metamorphic grade represented by the mineral zoning is attributed to a gradient in physical conditions (mainly temperature) at the time of metamorphism.In areas where pelitic schist and siliceous dolomite marble are rare or restricted in distribution, the mineral zones and isograds in impure calcareous rocks provide an alternative to conventional isograds for evaluating variations in metamorphic grade. In a metamorphic terrain where all three rock types occur, comparison of these isograds to those in pelitic and siliceous dolomite rocks results in a more accurate assessment of the distribution of isotherms and may provide some insight into the properties of the metamorphic fluid phase.  相似文献   

13.
Isothermal or isobaric phase diagram sections as a function of fluid composition (X F) are widely used for interpreting the genetic history of metacarbonate rocks. This approach has the disadvantages that: (1) the influence of a key metamorphic variable, either pressure (P) or temperature (T), is obscured; (2) the diagrams are inappropriate for systems that are not fluid-saturated. These problems are avoided by constructing phase-diagram projections in which the volatile composition of the system is projected onto a P-T coordinate frame, i.e., a petrogenetic grid. The univariant curves of such P-T projections trace the conditions of the invariant points of isothermal or isobaric phase-diagram sections, thereby defining the absolute stability of high-variance mineral assemblages, with and without a coexistent fluid phase. Petrogenetic grids for metacarbonate rocks are most useful for the study of regional metamorphism and for systems in which fluid composition has not been externally controlled. A calculated example of a P-T projection for the system CaO−MgO−SiO2−H2O−CO2 suggests that many assemblages (e.g., calcite +tale, enstatite+fluid, magnesite+tremolite, antigorite+diopside+dolomite, and calcite+forsterite+tremolite) in mixed-volatile systems have stability fields that make them useful as P-T indicators. Consideration of the principles governing projection topology demonstrates that the univariant curves around a fluid present invariant point cannot be oriented independently with respect to the direction of compositional variation in the fluid phase. This has the interesting predictive implication that if the direction of compositional variation along one univariant curve around an invariant point is known, then the direction of compositional variation along the remaining curves can be determined solely from topologic constraints. The same constraints can be applied to systems containing simple mineral solutions or melts in order to predict compositional variations.  相似文献   

14.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith.  相似文献   

15.
Small dolomite marble lenses and bands occur in the vast Caledonian migmatite and gneiss area of NW Spitsbergen (Svalbard archipelago). The fine-banded marbles contain numerous assemblages of minerals: calcite, dolomite, olivine, clinohumite, diopside, amphibole, chlorite, spiner and phologopite. The coexistence of calcite + dolomite + olivine + chlorite + spinel over the entire area indicates metamorphic temperatures of 600 to 680° at an estimated pressure of 4 kilobars. A temperature of near 600°C for the peak of metamorphism is suggested by mineral assemblages at the southernmost locality, Jäderinfjellet. Calcite-dolomite geothermometry indicated 595°C at the same locality. The spatial distribution of the marble assemblages suggests that metamorphism occurred under nearly isothermal conditions over an area of at least 25 by 30 kilometres.  相似文献   

16.
The article describes the thermal metamorphism of siliceous carbonate rocks near the dolerite intrusive body in Eastern Siberia. The mineral associations at the immediate contact with dolerite are the following: wollastonite+rankinite, rankinite+spurrite (+melilite?), spurrite+melilite+merwinite+calcite and merwinite+monticellite+melilite+calcite. The melilite in these associations is usually unzoned; its composition being essentially gehlenitic. During the regressive stage of contact metamorphism new akermanite-rich melilite and calcite were formed by replacement of merwinite and earlier gehlenitic melilite through participation of CO2. The newly forming melilite grains have sharp compositional zoning. The origin of zoning was connected with the fall of temperature and decrease of the mole fraction of CO2 in the fluid equilibrated with the minerals.  相似文献   

17.
变质流体研究新进展   总被引:7,自引:2,他引:7  
徐学纯 《地学前缘》1996,3(4):200-208
变质流体是变质过程的主要动力学因素之一。目前变质流体研究主要集中在下部地壳麻粒岩相变质流体,俯冲带高压-超高压变质流体和接触变质流体等方面。研究的主要问题是流体流动机制和元素迁移,流体-岩石相互作用和流体来源。下部地壳麻粒岩相变质流体以CO2为主,具有较低的aH2O。δ13C研究表明大约2/3CO2是深成的。富CO2流体流动是紫苏花岗岩形成和热扰动的原因之一,也是麻粒岩形成和大离子亲石元素亏损的主要因素。俯冲带是高压、超高压变质作用发生和流体活动最活跃的场所。流体富含H2O、CH4和CO2,可以诱导部分熔融反应和岛弧岩浆作用。高压变质条件下的矿物稳定性也与流体有关。同位素研究表明,在超高压变质期间没有化学上完全相同的流体大规模循环。流体-熔体系统模式能更有效地解释下插板片的元素再循环。接触变质流体研究主要集中在含有易于发生流体-岩石反应的不纯碳酸盐岩地区。硅灰石带中流体/岩石比率高达40∶1,表明接触变质岩石中有大量流体存在。接触变质过程流体成分有较大差异,主要取决于流体来源、原岩性质和侵入体特征。流体流动和循环模式受控于构造变形,岩浆作用和变质过程的动力学条件及流体成分。  相似文献   

18.
Abstract The Tal y Fan Intrusion is a 110 m thick sub-concordant metabasite sheet intruded into volcaniclastic and pyroclastic rocks of Ordovician age in North Wales. Despite low grade metamorphism, primary textural zones resulting from initial cooling of the sheet are preserved and retain primary mineralogical and chemical variations which influenced the nature and extent of metamorphic recrystallization. This has resulted in a vertical sequence of secondary mineral assemblages through the intrusion. During early hydrothermal alteration K-feldspar replaced plagioclase micropheno-crysts in the marginal and contact zones, and olivine in the central zone was replaced by saponite. Subsequent regional metamorphism resulted in the development of (metastable) prehnite-pumpellyite-epidote assemblages in two sub-zones characterized by high Fe2O3. Elsewhere the assemblage prehnite-actinolite-epidote developed except in the contact and marginal zones where activity of CO2 suppressed both prehnite and pumpellyite. Both assemblages contain excess albite, quartz and chlorite and, on the basis of uniform mineral compositions over the area of an individual thin section, are considered to represent buffered equilibrium assemblages indicative of prehnite-pumpellyite and prehnite-actinolite facies conditions. A metamorphic temperature of 310° C at 1.85 kbar is obtained using the P-T-X grid of Liou, Maruyama & Cho (1985), which implies a field gradient of ~ 44° C km-1. Assuming that metamorphism relates to burial, an overburden thickness of ~ 7 km is indicated. Total maximum thicknesses, however, of Ordovician, Silurian and Lower Devonian strata, in the area, do not exceed 6 km indicating a field gradient of 52° C km-1. These relatively high gradients may possibly be related to concealed late Caledonian intrusions, or alternatively may result from high heat flow as a consequence of crustal thinning, rapid sedimentation and intense magmatic activity in a marginal basin setting.  相似文献   

19.
Neoproterozoic evaporites occurring in the western part of the Lesser Himalaya in India, coeval to Pakistan, Iran and Oman evaporites, were investigated in order to understand the degree of metamorphism in them and in associated carbonates. The evaporite-bearing succession occurs in association of phyllite, quartzite and carbonate near the Main boundary Thrust. In order to learn the details about the burial history of these evaporite rocks, the Kübler illite crystallinity index (KI) was measured from the illite peaks of the clay minerals separated from the evaporite rocks and it indicated that this section has reached a maximum temperature up to ~300°C. Microthermometric measurements on fluid inclusions present in the associated dolomite show range of homogenization temperatures (Th), from 220 to 280°C, well within the temperature range of anchizone metamorphism. Additionally, dolomite shows a highly negative δ18O signature (mean, −15.5‰PDB), which is more likely related to diagenetic overprint from deep burial conditions rather than original precipitation from 18O-depleted seawater. The evaporites (sulfates and chloride) probably were transformed many times after their precipitation, but they have retained only the features developed during last one or two phases of alteration and deformation as they are continuously susceptible to minor changes in temperatures and stresses. The final temperature range of 42–78°C in sulfates and chloride gives thermal approximation estimate that is not in concordance with the thermal history of the basin and are likely related to conversion of anhydrite into gypsum and recrystallization of halite during exhumation. Highly negative oxygen isotopic composition, homogenization temperatures and KI values equivalent to a high anchizone metamorphism suggest a burial depth of ~10 km for these terminal Neoproterozoic evaporite-bearing sequences of the Lesser Himalaya.  相似文献   

20.
I. A. Tararin 《Petrology》2008,16(2):193-209
Geological, mineralogical, and geothermobarometric data testify that the regional metamorphism of the terrigenous protolith of the Kolpakovskaya Series, which composes the stratigraphic basement of the Kamchatka Median Crystalline Massif, corresponded to the kyanite mineral subfacies of the amphibolite facies at temperatures of 560–660°C and pressures of 5.9–6.9 kbar. This metamorphism predetermined wide kyanite development in high-Al garnet-biotite plagiogneisses. The younger granitization and migmatization of the plagiogneisses took place at a decrease in the pressure (depth), as follows from the textures of kyanite reaction replacement by andalusite in both the metamorphic rocks and the vein synmetamorphic granitoids and pegmatites. The temperature of the granitization and migmatization processes in the plagiogneisses was estimated at 620–650°C, and the pressure was evaluated at 1.9–3.0 kbar. Acid leaching that accompanied the granitization and migmatization processes resulted in the intense replacement of biotite by sillimanite (fibrolite) and, to a lesser degree, muscovite in the metamorphic and vein magmatic rocks. The highest temperature orthopyroxene-cordierite-biotite-orthoclase-plagioclase-quartz mineral assemblages were determined to have been formed in the Kolpakovskaya Series at a temperature of 830–840°C not by the regional metamorphism but in contact aureoles around gabbro-granitoid intrusions of the Lavkinskii intrusive complex of Oligocene-Miocene age in garnet-biotite and kyanite-garnet-biotite plagiogneisses of the amphibolite facies and cannot thus be regarded as evidence of an early granulite stage in the metamorphism of these rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号