首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoelectric measurements of Doppler shifts of various Fraunhofer lines obtained with the Capri magnetograph were analysed. The height dependence of the supergranular and oscillatory motions, as well as the two dimensional structure of these velocity fields is investigated. The most interesting results are the following:
  1. The oscillatory and supergranular motions are still clearly present in very deep photospheric layers as detected e.g. by means of the Ci line at 5380.3 Å.
  2. Whereas the vertical motions (both of oscillation and supergranulation) increase with height, the horizontal component of the supergranular flow is found to be decreasing slightly.
  3. Aperiodic horizontal motions are observed in the photospheric layers, which are probably connected with the process of excitation of the oscillatory field.
  4. There is no simple way of describing the oscillatory field in terms of independently oscillating ‘cells’, since the two-dimensional pattern changes its appearance drastically already in a fraction of one oscillation period.
  5. The correlation obtained by previous observers between vertical stationary motions, the chromospheric network and magnetic fields in particular is confirmed.
  相似文献   

2.
The evolution of the velocity and magnetic fields associated with supergranulation has been investigated using the Sacramento Peak Observatory Diode Array Magnetograph. The observations consist of time sequences of simultaneous velocity, magnetic field, and chromospheric network measurements. From these data it appears that the supergranular velocity cells may have lifetimes in excess of the accepted value of 24 hours. Magnetic field motions associated with supergranulation were infrequent and seem to be accompanied by changes in the velocity field. More prevalent were the slow dissipation and diffusion of stationary flux points. Vertical velocity fields of 200 m s–1 appear to be confined to downflows in magnetic field regions at supergranular boundaries. These downflows are only observed using certain absorption lines. Corresponding upflows in the center of supergranules of less than 50 m s–1 may be present but cannot be confirmed.  相似文献   

3.
The solar atmosphere is heated by a flux of mechanical waves propagating in one or more of the modes: acoustic, Alfvén and gravitational.The acoustic theory is compared with observational data and found inadequate. First, the theory is based quantitatively on the Böhm-Vitense convection zone model, and large-scale convective motions (supergranulation) and magnetic fields (unipolar regions) show that convection has another form. On the other hand, when granular motions are invoked the energy flux is too small. Second, atmospheric heating is localized in faculae, and enhanced acoustic flux beneath these regions is no longer explicable. Finally, the short periods of 10–30 s invoked recently appear inexplicable. Objections to the gravitational wave heating process are given briefly.Previous objections to Alfvén waves as an energy source followed from the belief that fields were generally uniform and of strength 50 G, now known to be incorrect. Models of Alfvén wave generation are based on (i) granule eddy motions, (ii) overstable oscillations in subsurface flux tubes and sunspot flux ropes, and (iii) supergranule motions, both horizontal and vertical.The first provides waves which propagate along thin flux tubes oscillating as taut wires in a compressible fluid; they may explain mottles, fibrils and other small emission features. The second may explain the enormous dissipation in spot groups, including flares. The third has been invoked earlier to explain spicules, and may have effects in the solar wind.  相似文献   

4.
The flux-rope-fibre model of solar magnetic fields is developed further to cover post-spot evolution of the fields, faculae, and the influence of magnetic fields on some convective motions. (i) Unipolar magnetic regions of a strongly dominant polarity are explained, as are some fields outside the network, and some tiny reversed polarity fields. (ii) The migration of magnetic regions is explained: the following regions to the poles where most of the flux just vanishes and the preceding towards the equator. (iii) The model explains the rotation of the gross pattern of background fields with a period of 27 days. It explains the puzzling features of active longitudes and of magnetic longitudes extending across the equator. (iv) The magnetic model provides a framework for the various chromospheric fine structures, the rosettes, bushes, double chains, mottles and spicules. It provides qualitative models of these features and points the way to a very complicated quantitative model of the network. (v) Several new convective patterns are described and explained in terms of magnetic stresses. The first is the moat around sunspots, which replaces the supergranule motions there. The second is the long-lived (4–7 days) supergranule cell enclosed by strong fields. The third is a small-scale () convective motion, and the fourth is aligned or long granules, both caused by small-scale magnetic fields. (vi) Photospheric line faculae and photospheric continuum faculae are different phenomena. The former, like the chromospheric faculae, are caused by Alfvén-wave heating. The latter are caused by a new small-scale convective motion. (vii) A model of the 3-min oscillation is described.  相似文献   

5.
The cloud model employed in the analysis of chromospheric contrast profiles is subject to two criticisms. The source function in the cloud may not be varied independently of the Doppler width in the case of Hα and the radiative coupling between the cloud and the underlying atmosphere cannot be ignored. These criticisms are investigated quantitatively with two simple extreme models. It is found that by taking account of both effects the cloud model may be reinstated. Observed chromospheric features may be understood in terms of clouds of varying parameters embedded in the uppermost regions of a generally undisturbed homogeneous atmosphere. The variable cloud parameters are the optical thickness, the Doppler width, the bulk velocity and the angular size viewed from the line forming regions of the underlying atmosphere. Without multidimensional models the distribution of these parameters in chromospheric features observed at supergranulation boundaries for instance cannot be determined. General considerations however allow the interpretation of plagettes as simply low-lying mottles and allow the chromospheric velocity distribution derived by the original cloud model analysis to be upheld.  相似文献   

6.
The large scale (> 5000 km) intensity structure of the photosphere has been examined. The power per frequency unit indicates a continuous increase towards smaller spatial frequency. No excess power exists at wavelengths near the size of the supergranulation (30000 km) or at any other wavelength between 5000 and 100000 km. However, direct measurement of the intensity distribution in 1652 supergranulation cells shows a very small increase of the intensity towards the cell boundary. The amount of this increase is larger near the solar limb. It is probably due to a weak continuum emission associated with the chromospheric network. Any temperature difference arising from the supergranulation convection is obscured by this emission and is probably less than 1 K.  相似文献   

7.
Supergranulation is one of the most visible length scales of solar convection and has been studied extensively by local helioseismology. We use synthetic data computed with the Seismic Propagation through Active Regions and Convection (SPARC) code to test regularized-least squares (RLS) inversions of helioseismic-holography measurements for a supergranulation-like flow. The code simulates the acoustic wavefield by solving the linearized three-dimensional Euler equations in Cartesian geometry. We model a single supergranulation cell with a simple, axisymmetric, mass-conserving flow. The use of simulated data provides an opportunity for direct evaluation of the accuracy of measurement and inversion techniques. The RLS technique applied to helioseismic-holography measurements is generally successful in reproducing the structure of the horizontal-flow field of the model supergranule cell. The errors are significant in horizontal-flow inversions near the top and bottom of the computational domain as well as in vertical-flow inversions throughout the domain. We show that the errors in the vertical velocity are due largely to cross talk from the horizontal velocity.  相似文献   

8.
A study of supergranule motions confirms horizontal velocities with peak values of typically 0.36 km s–1 as observed in Fe i 8688 Å. These show no significant variation with height over the range of formation of C i 9111, Fe i 8688, and Mg i 8806, but there is a substantial reduction to about one-half of this at the level of Ca ii 8542.Near disk center, supergranule vertical velocities in Fe i 8688 have rms values ±0.01 km –1, after allowance for the residual effects of the line-of-sight component of the horizontal supergranule motions, the five-minute oscillations, granule motions, and detector drift. There is a marginally-significant association of magnetic elements, and hence of cell boundaries, with downward motions; but this requires further testing.Measurements of downward velocities 0.1 km–1 in regions of strong magnetic field when using unpolarized light are attributed to the much higher downflow inside the elements themselves and have nothing to do with supergranule motions.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

9.
Results of a detailed study on supergranule lifetime and velocity fields are presented. We show the correlation between the observed downdraft velocity and the network magnetic flux elements on the quiet sun. After excluding areas with magnetic flux density 25 G, we find that the upper limit of the supergranule vertical speed is 0.1 km s–1 for both downdraft and updraft, and the r.m.s. speed is 0.03 km s–1. By observing the evolution of individual supergranules, we find that the average lifetime of supergranules might be 50 hours. We describe different ways of formation and decay of supergranular cells. New cells usually form in an area containing no pre-existing supergranule velocity fields. Cells may disappear in two ways: fragmentation and fading away.  相似文献   

10.
We have measured the motion of facular points and granules in the same region near a decaying sunspot. It is found that both features move away across the moat surrounding the sunspot. The mean speed of facular points is larger than that of granules: 0.65 km s–1 and 0.4 km s–1, respectively. These results are consistent with previous measurements of the speed of bright network features and moving magnetic fields, as well as of non-magnetic photospherical material. They support models in which a decaying sunspot is at the center of a supergranule, whose horizontal motions sweep out granules and magnetic flux tubes associated to the facular points. It is also found that granules are dragged by supergranular motions away of the moat.Contributions from the Kwasan and Hida Observatories, University of Kyoto.A part of this work was done while one of the authors (R.M.) was staying at the Kwasan and Hida Observatories, University of Kyoto, Japan, as a JSPS research fellow.  相似文献   

11.
The theoretical power spectrum of velocity fields and flux fluctuations at the solar photosphere is calculated using a quasi-nonlinear framework of superposition of unstable convective eigenmodes excited in the solar convection zone. It is demonstrated that this power spectrum exhibits at least three distinct peaks corresponding to granulation, mesogranulation and supergranulation. The vertical velocity and the brightness fluctuation at the solar surface are found to be correlated. The theoretical framework can be adopted for application to other types of stars in order to predict the dominant length scales in the power spectrum of convection in these stars.  相似文献   

12.
Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three?to?five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.  相似文献   

13.
Five days of coordinated observation were carried out from 24–29 September, 1987 at Big Bear and Huairou Solar Observatories. Longitudinal magnetic fields of an p sunspot active region were observed almost continuously by the two observatories. In addition, vector magnetic fields, photospheric and chromospheric Doppler velocity fields of the active region were also observed at Huairou Solar Observatory. We studied the evolution of magnetic fields and mass motions of the active region and obtained the following results: (1) There are two kinds of Moving Magnetic Features (MMFs). (a) MMFs with the same magnetic polarity as the center sunspot. These MMFs carry net flux from the spot, move through the moat, and accumulate at the moat's outer boundary. (b) MMFs in pairs of mixed polarity. These MMFs are not responsible for the decay of the spot since they do not carry away the net flux. MMFs in category (b) move faster than those of (a). (2) The speed of the mixed polarity MMFs is larger than the outflow measured by photospheric Dopplergrams. The uni-polar MMFs are moving at about the same speed as the Doppler outflow. (3) The chromospheric velocity is in approximately the opposite direction from the photospheric velocity. The photospheric Doppler flow is outward; chromospheric flow is inward. We also found evidence that downward flow appears in the photospheric umbra; in the chromosphere there is an upflow.  相似文献   

14.
One dimensional magnetograph scans have been used to study the 5-min photospheric velocity oscillations and the supergranulation. The oscillations in wing brightness lead the oscillations in velocity by less than 90° in the photosphere, and about 90° in the chromosphere, suggesting that they are traveling waves at lower levels and standing waves at higher levels. Downward flows have been observed to be coincident with the chromospheric network confirming the hypothesis that material is flowing downward at supergranular boundaries.  相似文献   

15.
Supergranulation is a component of solar convection that manifests itself on the photosphere as a cellular network of around 35 Mm across, with a turnover lifetime of 1 – 2 days. It is strongly linked to the structure of the magnetic field. The horizontal, divergent flows within supergranule cells carry local field lines to the cell boundaries, while the rotational properties of supergranule upflows may contribute to the restoration of the poloidal field as part of the dynamo mechanism, which controls the solar cycle. The solar minimum at the transition from cycle 23 to 24 was notable for its low level of activity and its extended length. It is of interest to study whether the convective phenomena that influence the solar magnetic field during this time differed in character from periods of previous minima. This study investigates three characteristics (velocity components, sizes and lifetimes) of solar supergranulation. Comparisons of these characteristics are made between the minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008, respectively. It is found that whereas the lifetimes are equal during both epochs (around 18 h), the sizes are larger in 1996 (35.9 ± 0.3 Mm) than in 2008 (35.0 ± 0.3 Mm), while the dominant horizontal velocity flows are weaker (139 ± 1 m s−1 in 1996; 141 ± 1 m s−1 in 2008). Although numerical differences are seen, they are not conclusive proof of the most recent minimum being inherently unusual.  相似文献   

16.
Recent developments in solar dynamo and other theories of magnetic fields and convection are discussed and extended. A basic requirement of these theories, that surplus fields are eliminated by turbulent or eddy diffusion, is shown to be invalid. A second basic requirement, that strong surface fields are created by granule or supergranule motions, is shown to be improbable. Parker's new thin-filament dynamo, based on the Petschek mechanism, is shown to provide the alternative possibilities: either the magnetic fields halt all convection or a steady state is reached in which the fields are a tangle of long, thin filaments. From the above and other considerations it is concluded that the dynamo and related diffuse-field theories are unacceptable, that solar magnetic fields are not dominated by convection, and that all the fields emerge as strong, concentrated fields (flux ropes) which were wound and twisted from a permanent, primordial field. The discussion may, incidentally, provide the physical elements of a deductive theory of hydromagnetic convection.  相似文献   

17.
Berrilli  F.  Del Moro  D.  Consolini  G.  Pietropaolo  E.  Duvall  T.L.  Kosovichev  A.G. 《Solar physics》2004,221(1):33-45
We investigate spatial dislocation ordering of the solar structures associated with supergranulation and granulation scales. The supergranular and granular structures are automatically segmented from time-distance divergence maps and from broad-band images, respectively. The spatial dislocation ordering analysis is accomplished by applying the statistical method of Pair Correlation Function, g 2(r), to segmented features in the solar fields. We compare the computed g 2(r) functions obtained from both single and persistent, i.e., time-averaged, fields associated with supergranulation and granulation. We conclude that supergranulation and granulation patterns present a different topological order both in single and persistent fields. The analysis carried out on single fields suggests that the granulation behaves as an essentially random distribution of soft plasma features with a very broad distribution in size, while supergranulation behaves as a random distribution of close packed, coherent stiff features with a rather defined mean size.  相似文献   

18.
Center-limb observations of line-center intensity and velocity fluctuations in the Magnesium b lines are described. Autocorrelation and power spectral analyses indicate small scale brightness structures having periodicities of 3000 km and 8000 km and large scale structures of 22000 km. Corresponding velocity structures are 6000 km and 30000 km.The relative rms fluctuation amplitude for the small scale bright features is found to be of order 12% and for the large scale features 8%. The variation of these rms values with heliocentric angle is also shown.At disk center some weak correlation is found between bright features and downward velocities in the large scale structures. Towards the limb there is a strong correlation in all three lines between line of sight motions and bright features. This indicates that the large scale bright features are closely associated with the supergranule motions.By inspecting the actual brightness and velocity fluctuation tracings it can be seen that, in some regions, the small scale structures show a significant negative correlation over a range of about 25000 km. Beyond this characteristic length, however, the correlation may decrease abruptly or even become positive for a similar distance. There is some evidence which suggests that this behaviour may also be related to the supergranule motions.  相似文献   

19.
The solar atmosphere may be divided into a number of isolated active components and a quiet residue. On the largest scale the latter is dominated by a general dipole magnetic field of strength 1–2 G; its observable components are flux concentrations in supergranule boundary regions (SBRs), spicules, mottles and polar plumes. The velocity field in the SBRs is discussed. There are continuous gas streaming motions up and down between the photosphere and the corona; spicules may be mainly downward moving gas.A unifying model is developed of these various components, as well as the heating mechanism of the whole quiet atmosphere. Highly ordered velocity fields of the cell, together with a gravitational wave, cause a vertical magnetic force tube to collapse below a critical level; the result is an upward eruption of a vortex ring at the Alfvén velocity. The complex mass velocity pattern may explain spicules, mottles and plumes, as well as unobservable streaming motions.The quiet atmosphere is divided into regions above SBRs and those above the inner parts of the cells. Hydromagnetic eruptions from the former may account for the entire heat requirement of the atmosphere. The model atmosphere has a chromosphere-corona transition layer which bulges upwards above the SBRs and so conforms with EUV data. The energy and mass balances in this solar atmosphere are considered, and it is also shown to be consistent with the radio data.  相似文献   

20.
We study the propagation of a train of acoustic shocks guided by diverging magnetic fields through a static model of the solar chromospheric network and transition region. Our results show that for initial flux densities of the order 106 ergs cm–2 s–1 in the lower chromosphere, the local efficiency of acoustic transmission into the corona can be much higher than calculated for a plane parallel atmosphere. Thus acoustic energy will tend to be deposited at higher chromospheric levels in diverging magnetic fields, and magnetic guiding may well influence the temperature profile of the network and plages. But the total flux that can be transmitted into the corona along such diverging fields is severely limited, since the magnetic elements occupy a small fractional area of the photosphere, and the transmission efficiency is a rapidly decreasing function of initial acoustic flux density. We conclude that diverging magnetic fields and a varying ratio of specific heats are not likely to allow high frequency shocks to dissipate high enough in a static atmosphere, to contribute significantly to the coronal energy balance. This result strengthens the view that acoustic waves do not heat the solar corona. However, the conclusion may be sensitive to the influence of observed mass motions, such as spicules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号