首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Worldwide analysis of the clustering of earthquakes has lead to the hypothesis that the occurrence of abnormally large clusters indicates an increase in probability of a strong earthquake in the next 3–4 years within the same region. Three long-term premonitory seismicity patterns, which correspond to different non-contradictory definitions of abnormally large clusters, were tested retrospectively in 15 regions. The results of the tests suggest that about 80% of the strongest earthquakes can be predicted by monitoring these patterns.Most of results concern pattern B (“burst of aftershocks”) i.e. an earthquake of medium magnitude with an abnormally large number of aftershocks during the first few days. Two other patterns, S and Σ often complement pattern B and can replace it in some regions where the catalogs show very few aftershocks.The practical application of these patterns is strongly limited by the fact that neither the location of the coming earthquake within the region nor its time of occurrence within 3–4 years is indicated. However, these patterns present the possibility of increasing the reliability of medium and short-term precursors; also, they allow activation of some important early preparatory measures.The results impose the following empirical constraint on the theory of the generation of a strong earthquake: it is preceded by abnormal clustering of weaker earthquakes in the space-time-energy domain; corresponding clusters are few but may occur in a wide region around the location of the coming strong earthquake; the distances are of the same order as for the other reported precursors.  相似文献   

2.
We propose a modification of the Pattern Informatics (PI) method that has been developed for forecasting the locations of future large earthquakes. This forecast is based on analyzing the space–time patterns of past earthquakes to find possible locations where future large earthquakes are expected to occur. A characteristic of our modification is that the effect of errors in the locations of past earthquakes on the output forecast is reduced. We apply the modified and original methods to seismicity in the central part of Japan and compared the forecast performances. We also invoke the Relative Intensity (RI) of seismic activity and randomized catalogs to constitute null hypotheses. We do statistical tests using the Molchan and Relative Operating Characteristic (ROC) diagrams and the log-likelihoods and show that the forecast for using the modified PI method is generally better than the competing original-PI forecast and the forecasts from the null hypotheses. Using the bootstrap technique with Monte-Carlo simulations, we further confirm that earthquake sequences simulated based on the modified-PI forecast can be statistically the same as the real earthquake sequence so that the forecast is acceptable. The main and innovative science in this paper is the modification of the PI method and the demonstration of its applicability, showing a considerable promise as an intermediate-term earthquake forecasting tool.  相似文献   

3.
《Gondwana Research》2010,17(3-4):512-526
The spatial distribution of deep slow earthquake activity along the strike of the subducting Philippine Sea Plate in southwest Japan is investigated. These events usually occur simultaneously between the megathrust seismogenic zone and the deeper free-slip zone on the plate interface at depths of about 30 km. Deep low-frequency tremors are weak prolonged vibrations with dominant frequencies of 1.5–5 Hz, whereas low-frequency earthquakes correspond to isolated pulses included within the tremors. Deep very-low-frequency earthquakes have long-period (20 s) seismic signals, and short-term slow-slip events are crustal deformations lasting for several days. Slow earthquake activity is not spatially homogeneous but is separated into segments some of which are bounded by gaps in activity. The spatial distribution of each phase of slow earthquake activity is usually coincident, although there are some inconsistencies. Very-low-frequency earthquakes occur mainly at edges of segments. Low-frequency earthquakes corresponding to tremors of relatively large amplitude are concentrated at spots where tremors are densely distributed within segments. The separation of segments by gaps suggests large differences in stick-slip and stable sliding caused by frictional properties of the plate interface. Within each segment, variations in the spatial distribution of slow earthquakes reflected inhomogeneities corresponding to the characteristic scales of events.  相似文献   

4.
The Sannio-Matese region is one of the most seismically active regions of Italy and has been struck by large historical earthquakes. At present, the area is characterized by low magnitude background seismicity and small seismic sequences following M4 main events. In this paper, we show Vp and Vp/Vs models and 3D locations for a complete set of earthquakes occurring in the period 1991–2001. We observe a significant crustal heterogeneity, with large scale east-verging high Vp fault-related-folds, stacked by the Pliocene compression. The relocated earthquakes cluster along a 70° east-dipping, NW-striking plane located at the border of the high Vp thrust units. Normal fault earthquakes related to the young and active extension occur within these high Vp zones, interpreted as high strength material. We expect large future earthquakes to occur within these high Vp zones actually characterized by low magnitude seismicity at their borders.  相似文献   

5.
Kazushige Obara   《Gondwana Research》2009,16(3-4):512-526
The spatial distribution of deep slow earthquake activity along the strike of the subducting Philippine Sea Plate in southwest Japan is investigated. These events usually occur simultaneously between the megathrust seismogenic zone and the deeper free-slip zone on the plate interface at depths of about 30 km. Deep low-frequency tremors are weak prolonged vibrations with dominant frequencies of 1.5–5 Hz, whereas low-frequency earthquakes correspond to isolated pulses included within the tremors. Deep very-low-frequency earthquakes have long-period (20 s) seismic signals, and short-term slow-slip events are crustal deformations lasting for several days. Slow earthquake activity is not spatially homogeneous but is separated into segments some of which are bounded by gaps in activity. The spatial distribution of each phase of slow earthquake activity is usually coincident, although there are some inconsistencies. Very-low-frequency earthquakes occur mainly at edges of segments. Low-frequency earthquakes corresponding to tremors of relatively large amplitude are concentrated at spots where tremors are densely distributed within segments. The separation of segments by gaps suggests large differences in stick-slip and stable sliding caused by frictional properties of the plate interface. Within each segment, variations in the spatial distribution of slow earthquakes reflected inhomogeneities corresponding to the characteristic scales of events.  相似文献   

6.
Based on a block structure model of the inner belt of central Japan, an examination was conducted of the space-time distribution patterns of destructiv magnitudes M 6.4 or greater (M =Japan Meteorological Agency Scale). The distribution patterns revealed a periodicity in earthquake activit seismic gaps. Major NW—SE trending left-lateral active faults divide the inner belt of central Japan into four blocks, 20–80 km wide. The occurrenc A.D. with M ≥ 6.4, which have caused significant damage, were documented in the inner belt of central Japan. The epicenters of these earthquakes close to the block boundaries.

Using the relationship between the magnitude of earthquakes which occurred in the Japanese Islands and the active length of faults that generated them, movement is calculated for each historical earthquake. Space—time distributions of earthquakes were obtained from the calculated lengths, the latitud of generation. When an active period begins, a portion or segment of the block boundary creates an earthquake, which in turn appears on the ground surf active period ends when the block boundary generates earthquakes over the entire length of the block boundary without overlapping.

Five seismic gaps with fault lengths of 20 km or longer can be found in the inner belt of central Japan. It is predicted that the gaps will generate ea magnitudes of 7.0. These data are of significance for estimating a regional earthquake risk over central Japan in the design of large earthquake resist

The time sequences of earthquakes on the block boundaries reveal a similar tendency, with alternating active periods with seismic activity and quiet pe activity. The inner belt of central Japan is now in the last stage of an active period. The next active period is predicted to occur around 2500 A.D.  相似文献   


7.
Although subduction zones around the world are known to be the source of earthquakes and/or tsunamis, not all segments of these plate boundaries generate destructive earthquakes and catastrophic tsunamis. Costa Rica, in Central America, has subduction zones on both the Pacific and the Caribbean coasts and, even though large earthquakes (Mw = 7.4–7.8) occur in these convergent margins, they do not produce destructive tsunamis. The reason for this is that the seismogenic zones of the segments of the subduction zones that produce large earthquakes in Costa Rica are located beneath land (Nicoya peninsula, Osa peninsula and south of Limón) and not off shore as in most subduction zones around the world. To illustrate this particularity of Costa Rican subduction zones, we show in this work the case for the largest rupture area in Costa Rica (under the Nicoya peninsula), capable of producing Mw ~ 7.8 earthquakes, but the tsunamis it triggers are small and present little potential for damage even to the largest port city in Costa Rica.The Nicoya seismic gap, in NW Costa Rica, has passed its ~50-year interseismic period and therefore a large earthquake will have to occur there in the near future. The last large earthquake, in 1950 generated a tsunami which slightly affected the southwest coast of the Nicoya Peninsula. We present here a simulation to study the possible consequences that a tsunami generated by the next Nicoya earthquake could have for the city of Puntarenas. Puntarenas has a population of approximately eleven thousand people and is located on a 7.5 km long sand bar with a maximum height of 2 m above the mean sea level. This condition makes Puntarenas vulnerable to tsunamis.  相似文献   

8.
In this paper, we present a relation between the earthquake occurrence and electric resistivity structures in the crust, in West Anatolia and the Thrace region of Turkey. The relationship between magnetotelluric georesistivity models and crustal earthquakes in West Anatolia, during a period from 1900 to 2000, is investigated. It is found that most of the large crustal earthquakes occurred in and around the areas of the highest electrical resistivity in the upper crust, although rare small magnitude earthquakes are observed in some parts of the conductive lower crust in West Anatolian extensional terrain. The high-resistivity zones may represent rocks that are probably mechanically strong enough to permit sufficient stress to accumulate for earthquakes to occur in western Anatolia and the Thrace region. However, some recent studies state that the generation of a large earthquake is not only a pure mechanical process, but is closely related to fluid existence. We also reviewed recent world-wide researches including results from the Anatolian data for the first time and discussed all general findings in combination. Our findings show that the boundary between the resistive upper crust and the conductive lower crust correlates well with the cutout depth of the seismicity in West Anatolia and Thrace. This boundary is also attributed to the fluid bearing brittle–ductile transition zone in world literature. Fluid migration from the conductive lower crust to the resistive upper crust may contribute the seismicity in resistive zones. Alternatively, the upper–lower crust boundary may act as a stress concentrator and fluids may help to release strain energy in brittle parts of lower crust, by small magnitude earthquakes, whereas they may help in focusing strain in mechanically strong and electrically resistive zones for large earthquakes to occur.  相似文献   

9.
An analysis of the distribution (both spatial and temporal) of large earthquakes (M 6.5) along the Gissar—Kokshaal and the Hindu-Kush—Darvaz—Karakul fault zones in Middle Asia has revealed the linear character of migration from the ends to the centre of the Pamir arcs at a rate of 1–2 km/year to 3–6 km/year. Migration of large earthquakes at a similar rate has also been found in some of the other great fault zones. An attempt has been made to evaluate the duration of a migration cycle.The regularity found, although it needs further confirmation, has been used to tentatively predict the possible sites of future large earthquakes likely to occur in the present century.  相似文献   

10.
Himalayan orogenic belt is the highest and largest continental collision and subduction zone on the Earth. The Himalayan orogenic belt has produced frequent large earthquakes and caused several geohazards due to landslides and housing collapse, having an impact on the safety of life and property along a length of over 2500 km. Here we took three earthquake clusters as examples, which occurred at Nepal Himalaya, eastern Himalayan syntaxis and western Himalayan syntaxis, respectively. Here we calculated the earthquake locations and fault plane solutions based on the waveform data recorded by seismic stations deployed in source areas by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. We found that at the Nepal Himalayan, the Main Himalayan Thrust is the major tectonic structure for large earthquakes to occur. At the eastern Himalayan syntaxis, most earthquakes are of the reverse or strike-slip faulting. The major tectonic feature is the combination of the NE-dipping thrust with the southeastern escape of the Tibetan plateau. At the western Himalayan syntaxis, intermediate-depth earthquakes are active. These observations reveal the geometry of the deep subduction of the continental plate with steep dipping angle.  相似文献   

11.
喜马拉雅造山带是地球上海拔最高、规模最大的陆陆板块俯冲碰撞带在这条长达2 500 km的板块边界上,近年来多次发生破坏性地震,造成大规模的滑坡、房屋倒塌等次生灾害,给人民生命和财产安全造成严重的威胁。分别选取尼泊尔喜马拉雅、喜马拉雅东构造结和喜马拉雅西构造结地区近期发生的3个地震震群作为研究实例,基于中国科学院青藏高原研究所在研究区架设的区域流动地震台站记录的波形资料,对地震的震源位置和震源机制解进行计算。结果表明,在尼泊尔喜马拉雅地区,主喜马拉雅逆冲断裂是大地震的主要发震构造;东构造结地区的地震以逆冲和走滑型为主,表明印度板块向北东方向的逆冲推覆和青藏高原向东南逃逸的侧向挤出是该地区的主要构造背景;西构造结地区中深源地震多发,揭示了高角度大陆深俯冲的几何形态。  相似文献   

12.
An analysis of the data in the catalogues of Italian earthquakes indicates that large earthquakes which occur in the area of radius of about 140 km centered in the Straits of Messina occur in sequences. Each sequence is generally formed by two events and covers an average time window of 10 years.The last four sequences occurred in the time windows 1783–1891, 1818–1823, 1865–1870, 1905–1908 and are separated by about 40 years indicating that in that area there is now a gap in the time domain.The analysis of the data in the Catalogue for the region between the latitudes 39°N and 41°50′N indicates that in that region the large earthquakes occurred in 13 sequences. Each sequence is formed by 3 events in average and covers an average time window of 7 years. This indicates that, after the earthquake of Nov. 1980, which occurred after a gap of 67 years, other moderately large earthquakes may be expected in that area in the next few years.  相似文献   

13.
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266–533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels.  相似文献   

14.
在中国西部及邻区有一个以中国南北地震带—蒙古东部地震带、喜马拉雅地震带和帕米尔—天山—阿尔泰山—蒙古西部地震带为3条边而组成的巨型中亚三角形地震带,其大地震发生的强度之大、频度之高以及重复率之高、重复周期之短,在世界大陆上绝无仅有。这些大地震在空间上受到大地构造位置、构造应力场-滑移线场、介质力学条件、壳内低阻流变层和先存力学脆弱带等五位一体的复合控制,震中主要分布于3条边与活动断裂带交叉处的中—上地壳中;在时间上存在以21.5 a±为最小单元的多种周期。印度板块的持续顶撞和推挤,是该带大地震孕育的能源,而太阳黑子活动和地球自转速率变化可能是该带地震的触发因素。以2001年昆仑山大地震和2008年汶川大地震为标志,中亚三角形地震带可能进入了一个新的107.5 a活动中周期。果真如此,则未来数十年内在该三角形的3条边及其周缘,可能分别发生若干个M≥8.0级大地震和多个M≥7.0级强地震。  相似文献   

15.
欧亚地区现代板块构造边界和强震活动带   总被引:1,自引:0,他引:1  
<正> 前言 自板块构造说兴起后,李春昱教授是用此学说研究我国地质构造最早的学者之一。李先生不仅在中国和亚洲古板块的划分和发展上发表过许多有价值的见解,而且对板块运动与地震活动之间的关系亦作过专门研究。我们在七十年代末编制亚欧地震构造图时曾得到李先生的热诚关怀、支持和鼓励,在编图思路和具体内容上给了我们十分宝贵的指教,并提供了他尚未发表的研究成果。  相似文献   

16.
17.
Despite extensive investigations, no precursor patterns for reliably predicting major earthquakes have thus far been identified. Seismogenic locked segments that can accumulate adequate strain energy to cause major earthquakes are highly heterogeneous and low brittle. The progressive cracking of the locked segments with these properties can produce an interesting seismic phenomenon: a landmark earthquake and a sequence of smaller subsequent earthquakes (pre-shocks) always arise prior to another landmark earthquake within a well-defined seismic zone and its current seismic period. Applying a mechanical model, magnitude constraint conditions, and case study data of 62 worldwide seismic zones, we show that two adjacent landmark earthquakes reliably occur at the volume-expansion point and peak-stress point (rupture) of a locked segment; thus, the former is an identified precursor for the latter. Such a precursor seismicity pattern before the locked-segment rupture has definite physical meanings, and it is universal regardless of the focal depth. Because the evolution of landmark earthquakes follows a deterministic rule described by the model, they are predictable. The results of this study lay a firm physical foundation for reliably predicting the occurrence of future landmark earthquakes in a seismic zone and can greatly improve our understanding of earthquake generation mechanism.  相似文献   

18.
Great earthquakes in the past (e.g. 1869 Cachar earthquake, 1897 great Assam earthquake) have caused large scale damage and ground liquefaction in the Guwahati city. Moreover, seismologists are of opinion that a great earthquake might occur in the unruptured segment of the North-East Himalaya that is near to Guwahati city. In this paper, the liquefaction hazard due to these events have been simulated. The obtained results are in general agreement with the reported damages due to the past earthquakes. The central part of the city (i.e. Dispur, GS road), that has large thickness of soft soil deposit and shallow ground water table, is highly vulnerable to liquefaction.  相似文献   

19.
Earthquake prediction is an area of research of great scientific and public fascination. The reason for this is not only that earthquakes can cause extremely large numbers of fatalities in a short time, but also because earthquakes can have a large social and economic impact on society. Earthquake prediction in the sense of making deterministic predictions about the place, time, and magnitude of earthquakes may very well be fundamentally impossible. However, based on a variety of data, earth scientists can make statements about the probability that earthquakes with a certain size will occur in a certain region over a specified time period. In this context one speaks of “earthquake forecasting.” A number of methods to achieve this are presented. However, it is not obvious how society should respond to these forecasts. It is shown that there is a fundamental dilemma for decision makers that statements of scientists concerning earthquake occurrence either contain very specific information but are very uncertain, or contain very general information but are very certain. Earthquake hazard can to a large extent be reduced by formulating and enforcing appropriate building codes. However, given the fact that the majority of the population that is threatened by earthquakes is living in the third world, it is clear that this cannot easily be realized. For these reasons, earthquake prediction is not only a scientific problem: it also has a complex political dimension.  相似文献   

20.
汶川MS8.0级地震、芦山MS7.0级地震和鲁甸MS6.5级地震均引发了大量的滑坡灾害。由于震级差异和地质地形条件的不同,地震滑坡分布情况有较大区别。本文综合已有的研究成果,从地震、地质和地貌3个方面,对比分析了地震滑坡的分布规律。结果表明:(1)3次地震滑坡数量和密度随着PGA和震级的增加而增加。汶川和鲁甸地震随烈度的增加,滑坡数量呈现递增的趋势。但芦山地震在较低烈度区也发育着大量滑坡。(2)断层影响滑坡分布的最大距离随着震级的增加而增加。在最大影响距离0.2倍的范围内,汶川地震分布有80%的滑坡,而其他两次地震仅30%。此外,汶川地震滑坡数量随断层距离呈指数衰减关系。(3)地震滑坡的分布受到地形的强烈影响。Ⅶ度及以上烈度区地形切割深度越大,地震触发的滑坡集中分布区域相对高差越大。同时,滑坡集中发育的坡度会随之增加。切割深度越大,地震滑坡更易发生在地势较陡的山脊或者上坡处,这可能与地形放大效应有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号