首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Evidence for a simple pathway to maghemite in Earth and Mars soils   总被引:1,自引:0,他引:1  
Soil magnetism is greatly influenced by maghemite (γ-Fe2O3), the presence of which is usually attributed to the following: (1) heating of goethite in the presence of organic matter; (2) oxidation of magnetite (Fe3O4); or (3) dehydroxylation of lepidocrocite (γ-FeOOH). Formation of the latter two minerals in turn requires the presence of Fe(II) in the system. No laboratory experiment or soil study to date has shown whether maghemite can form from ferrihydrite, a poorly crystalline Fe(III) oxide [∼Fe4.5(O,OH,H2O)13.5], below 250°C. However, ferrihydrite is the usual precursor of goethite (α-FeOOH) and hematite (α-Fe2O3), the most frequently occurring crystalline Fe(III) oxides in soils. Here is presented in vitro evidence that ferryhidrite can partly transform into maghemite at 150°C. This transformation occurs upon aging of ferrihydrite precipitated in the presence of phosphate or other ligands capable of ligand exchange with Fe-OH surface groups. This maghemite coexists with hematite and is a transient phase in the transformation of ferrihydrite to hematite, which is apparently stabilized by the adsorbed ligands. Its particle size is small (10 to 30 nm), and its X-ray diffraction pattern exhibits superstructure reflections. The possible formation of maghemite in Mars and in different Earth soils can partly be explained in the light of this pathway with minimal ad hoc assumptions.  相似文献   

2.
Geochemistry of magnetite and maghemite in soils in European Russia   总被引:1,自引:0,他引:1  
A method is proposed for determining the proportions of soluble Fe oxides (magnetite, FeOFe2O3, and maghemite, γ-Fe2O3) based on the measured magnetic susceptibility before and after treatment of soil with the Tamm or Mehra-Jackson (DCB) reagents. The development of hydromorphism in steppe soils in Ciscausiaia is associated with an increase in the magnetite fraction and, consequently, the average magnetite: maghemite ratio increases from 0.8–0.9 to 1.1. In these soils, smectites facilitate magnetite oxidation to maghemite. Soddy-podzolic and dark humic soils in the Cis-Ural region are noted for low values of the magnetite: maghemite ratio (0.5 on average) due to maghemite predominance. Soils in the Cis-Ural region on cover red-earth clays inherit lithogenic Fe oxides: hematite and maghemite. Hydromorphism in humid environments in northern taiga is accompanied by a significant increase in the magnetite: maghemite ratio to 4–9. Some issues of Fe geochemistry in magnetite and maghemite are considered.  相似文献   

3.
Magnetic properties, free and active Fe oxides, grain size distribution and mineral assemblage of a Quaternary loess–Tertiary red clay (TRC) section in Lingtai County in the Chinese Loess Plateau were studied. The results suggest that the TRC of the Lingtai section shares similar aeolian characteristics with the overlying Quaternary loess-paleosol sequence (QLPS), but the former is generally more intensively weathered than the latter, as indicated by its higher citrate–bicarbonate–dithionite (CBD) extractable Fe (Fed), finer grain size and lower content of easily weathered primary minerals. However, magnetic susceptibility (χlf) and magnetic remanence (χarm, SIRM and SOFT etc.) of the main part of the TRC are significantly lower, implying the decline of ferrimagnetic minerals (FM). In contrast, hematite and goethite in the TRC is significantly enhanced, as indicated by its higher HIRM. The acid ammonium oxalate (AAO) extractable Fe (Feo) of the whole section sharply decreases with increasing age. Feo and Feo/Fed values of the section are significantly correlated with χlf. Especially in the TRC, the low values of Feo and Feo/Fed correspond to weak χlf. This suggests a significant influence of the age-related transformation of Fe oxides on the decline of FM in the TRC. Lower FM and higher hematite and/or goethite in the TRC further suggest the transformation of FM into hematite with the aging of Fe oxides during post-depositional processes, though more evidence is needed to understand the processes involved. χlf of the TRC in the Chinese Loess Plateau mostly cannot be regarded as a promising paleoclimatic proxy because its weak magnetism does not correlate to its strong pedogenesis.  相似文献   

4.
The reductive dissolution of FeIII (hydr)oxides by dissimilatory iron-reducing bacteria (DIRB) could have a large impact on sediment genesis and Fe transport. If DIRB are able to reduce FeIII in minerals of high structural order to carry out anaerobic respiration, their range could encompass virtually every O2-free environment containing FeIII and adequate conditions for cell growth. Previous studies have established that Shewanella putrefaciens CN32, a known DIRB, will reduce crystalline Fe oxides when initially grown at high densities in a nutrient-rich broth, conditions that poorly model the environments where CN32 is found. By contrast, we grew CN32 by batch culture solely in a minimal growth medium. The stringent conditions imposed by the growth method better represent the conditions that cells are likely to encounter in their natural habitat. Furthermore, the expression of reductases necessary to carry out dissimilatory Fe reduction depends on the method of growth. It was found that under anaerobic conditions CN32 reduced hydrous ferric oxide (HFO), a poorly crystalline FeIII mineral, and did not reduce suspensions containing 4 mM FeIII in the form of poorly ordered nanometer-sized goethite (α-FeOOH), well-ordered micron-sized goethite, or nanometer-sized hematite (α-Fe2O3) crystallites. Transmission electron microscopy (TEM) showed that all minerals but the micron-sized goethite attached extensively to the bacteria and appeared to penetrate the outer cellular membrane. In the treatment with HFO, new FeII and FeIII minerals formed during reduction of HFO-Fe in culture medium containing 4.0 mmol/L Pi (soluble inorganic P), as observed by TEM with energy-dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The minerals included magnetite (Fe3O4), goethite, green rust, and vivianite [Fe3(PO4)2 · 8H2O]. Vivianite appeared to be the stable end product and the mean coherence length was influenced by the rate of FeIII reduction. When Pi was 0.4 mol/L under otherwise identical conditions, goethite was the only mineral observed to form, and less Fe2+ was produced overall. Hence, the ability of DIRB to reduce Fe (hydr)oxides may be limited when the bacteria are grown under nutrient-limited conditions, and the minerals that result depend on the vigor of FeIII reduction.  相似文献   

5.
Iron oxides may undergo structural transformations when entering an anoxic environment. These transformations were investigated using the isotopic exchange between aqueous Fe(II) and iron oxides in experiments with 55Fe-labelled iron oxides. 55Fe was incorporated congruently into a ferrihydrite, two lepidocrocites (#1 and #2), synthesised at 10°C and 25°C, respectively, a goethite and a hematite. The iron oxides were then submerged in Fe2+ solutions (0-1.0 mM) with a pH of 6.5. In the presence of aqueous Fe2+, an immediate and very rapid release of 55Fe was observed from ferrihydrite, the two lepidocrocites and goethite, whereas in the absence of Fe2+ no release was observed. 55Fe was not released from hematite, even at the higher Fe2+ concentration. The release rate is mainly controlled by characteristics of the iron oxides, whereas the concentration of Fe2+ only has minor influence. Ferrihydrite and 5-nm-sized lepidocrocite crystals attained complete isotopic equilibration with aqueous Fe(II) within days. Within this timeframe ferrihydrite transformed completely into new and more stable phases such as lepidocrocite and goethite. Lepidocrocite #2 and goethite, having larger particles, did not reach isotopic equilibrium within the timeframe of the experiment; however, the continuous slow release of 55Fe suggests that isotopic equilibrium will ultimately be attained.Our results imply a recrystallization of solid Fe(III) phases induced by the catalytic action of aqueous Fe(II). Accordingly, iron oxides should properly be considered as dynamic phases that change composition when exposed to variable redox conditions. These results necessitate a reevaluation of current models for the release of trace metals under reducing conditions, the sequestration of heavy metals by iron oxides, and the significance of stable iron isotope signatures.  相似文献   

6.
铁(氢)氧化物悬液中磷酸盐的吸附-解吸特性研究   总被引:2,自引:0,他引:2  
铁(氢)氧化物对P的吸持和释放在一定程度上决定着P的生物有效性和水体富营养化。以两种环境中常见晶质铁氧化物(针铁矿和赤铁矿)为对照,采用X射线衍射(XRD)、透射电镜(TEM)、热重分析(TGA)和孔径分析以及动力学和吸附-解吸热力学平衡等技术方法,研究了弱晶质水铁矿对P吸附-解吸特性,并探讨了相关机制。实验表明,三种矿物对P的吸附分为起始的快速反应和随后的慢速反应,它们均符合准一级动力学过程,反应中OH释放明显滞后于P吸附,P吸附经历了从外围到内囤配位、单齿到多齿配位过渡的过程,与晶质氧化铁比,水铁矿吸附容量和OH释放量更大、慢速吸附反应更快、存在缓慢扩散反应阶段,吸附容量依次是:水铁矿(436μmol/m^2)〉针铁矿(262μmol/m^2)〉赤铁矿(228μmol/m^2),针铁矿和赤铁矿吸附P符合L(Langmuir)模型,而水铁矿更符合F(Fremldlictl)模型。中性盐介质(KCl)中在最大吸附量时P的解吸率依次为:水铁矿(85%)〈针铁矿(10%)〈赤铁矿(125%),柠檬酸通过配体解吸和诱导溶解两种机制促进P的解吸,最大吸附量时解吸率依次是:针铁矿(25%)〈水铁矿(32%)〈赤铁矿(50%)。  相似文献   

7.
《Applied Geochemistry》2004,19(6):973-979
The association of rare earth and other trace elements with Fe and Mn oxides was studied in Fe-Mn-nodules from a lateritic soil from Serra do Navio (Northern Brazil). Two improved methods of selective dissolution by hydroxylamine hydrochloride and acidified hydrogen peroxide along with a classical Na–citrate–bicarbonate–dithionite method were used. The two former reagents were used to dissolve Mn oxides without significant dissolution of Fe oxides, and the latter reagent was used to dissolve both Mn and Fe oxides. Soil nodules and matrix were separated by hand. Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry after fusion with lithium metaborate, and X-ray diffraction were used to determine the elemental and mineralogical composition of the nodules and soil matrix. The latter was composed of kaolinite, gibbsite, goethite, hematite, and quartz. In the nodules, lithiophorite LiAl2(MnIV2MnIII)O6(OH)6 was detected in addition to the above-mentioned minerals. The presence of hollandite (BaMn8O16) and/or coronadite (PbMn8O16) in the nodules is also possible. In comparison to the matrix, the nodules were enriched in Mn, Fe, K, and P, and relatively poor in Si, Al, and Ti. The nodules were also enriched in all trace elements determined. Phosphorus, As and Cr were associated mainly with Fe oxides; Cu, Ni, and V were associated with both Fe and Mn oxides; and Ba, Co, and Pb were associated mainly with Mn oxides. Distribution of rare earth elements indicated a strong positive Ce-anomaly in the nodules, compared to the absence of any anomaly in the matrix. Some of Ce was associated with Mn oxides. The improved methods achieved almost complete release of Mn from the sample without decreasing the selectivity of dissolution, i.e., without dissolving significant amounts of Fe oxides and other minerals, and provided reliable information on associations of trace elements with Mn oxides. These methods are thus proposed to be included in sequential extraction schemes for fractionation of trace elements in soils and sediments.  相似文献   

8.
Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (∼10−11 mol Fe(II) m−2 g−1), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III)aq and bacterially-generated Fe(II)aq concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area.  相似文献   

9.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

10.
Computer modelling techniques were used to elucidate the hydration behaviour of three iron (hydr)oxide minerals at the atomic level: white rust, goethite and hematite. A potential model was first adapted and tested against the bulk structures and properties of eight different iron oxides, oxyhydroxides and hydroxides, followed by surface simulations of Fe(OH)2, α-FeO(OH) and α-Fe2O3. The major interaction between the adsorbing water molecules and the surface is through interaction of their oxygen ions with surface iron ions, followed by hydrogen-bonding to surface oxygen ions. The energies released upon the associative adsorption of water range from 1 to 17 kJ mol−1 for Fe(OH)2, 26 to 80 kJ mol−1 for goethite and 40 to 85 kJ mol−1 for hematite, reflecting the increasing oxidation of the iron mineral. Dissociative adsorption at goethite and hematite surfaces releases larger hydration energies, ranging from 120 to 208 kJ mol−1 for goethite and 76 to 190 kJ mol−1 for hematite.The thermodynamic morphologies of the minerals, based on the calculated surface energies, agree well with experimental morphologies, where these are available. When the partial pressures required for adsorption of water from the gas phase are plotted against temperature for the goethite and hematite surfaces, taking into account experimental entropies for water, it appears that these minerals may well be instrumental in the retention of water during the cyclic variations in the atmosphere of Mars.  相似文献   

11.
Relatively strongly magnetic fine components (< 30μm, XS-4J and DS-4J) which are most environmentally sensitive were separated from layer S5-1 in the Xifeng and Duanjiapo loess sections and analyzed by MPV-3 for their morphometric characteristics and reflectance, SEM-ESD for their element contents and XRD for their mineral phases, respectively. The results showed that minerals in both samples are dominated by detrial Fe-Ti oxides of aeolian origin. In sample XS-4J the reflectance and iron contents of magnetic minerals are usually high. In addition to magnetite (Fe3O4), maghemite (γFe2O3) and hematite (Fe2O3), some Fe-high oxide (72.25 wt%–86.67 wt%), ilmenite (FeTiO3), and magnetite-ulvöspinel [Fe(FeCr)O4, Fe (FeNi)O4] were also detected. In sample DS-4J obvious negative linear correlations were found between Ti and Fe, and the contents of Mn, Si, Al and Ca are usually high and the minerals are dominated by magnetite (maghemite), goethite (FeOOH) and limonite (containing Si and OH). In addition, the signs of corrosion of magnetic minerals and newly crystallized magnetite (maghemite) were recognized. Differences in the composition and assemblage characteristics of magnetite minerals between XS and DS reflect significant differences in source rocks and preserving conditions.  相似文献   

12.
Ferrimagnetic minerals in red paleosols of Pleistocene Epoch, eastern China   总被引:1,自引:1,他引:0  
The type,grain size and origin of ferimagnetic minerals separated from red paleosols of pleistocene Epoch(Q2)in eastern China ,were studied by using mineral magnetic measurement,X-ray powder diffraction and electron microscopy.Results showed that the iron oxider in red paleosols were composed of hematite(α-Fe2O3),maghemite(γ-Fe2O3) and goethite(α-FeOOH),Mineral magnetic parameters and X-ray diffraction patterns indicated that maghemite was the dominant remanence carrier in red paleosols,which is characterized by superparamagnetic(SP) and stable single domain(SSD) grains,The variations of magnetic susceptibility(χ) ,anhysteretic magnetic susceptibility(χRAM)and saturation isothermal remanent magnetization(SIRM) for red paleosols following heating to various temperatures showed two peak values at 700℃ and 900℃.The spherulitic magnetic particles measuring 250-1000μm in diameter in red paleosols were separated by the magnetic separation method,indicating that these magnetic particles were an assemblage of superparamagnetic and stable single domain ferrimagnetic grains,It is suggested that the ferrimagnetic minerals of red paleosols be a pedogenic ferrimagnetic component under high temperature and high humid conditions in the Pleistocene Fpoch(Q2).It is concluded that the magnetism characteristics of red paleosols can be used to evaluate the environmental changes of Quaternary in eastern China.  相似文献   

13.
Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0-13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacterium (DIRB), Shewanella putrefaciens CN32. Here we reveal that the impact of Al on microbial reduction varies with Fe(III) (hydr)oxide type. No significant difference in Fe(III) reduction was observed for either goethite or lepidocrocite as a function of Al substitution. In contrast, Fe(III) reduction rates significantly decreased with increasing Al substitution of ferrihydrite, with reduction rates of 13% Al-ferrihydrite more than 50% lower than pure ferrihydrite. Although Al substitution changed the minerals’ surface area, particle size, structural disorder, and abiotic dissolution rates, we did not observe a direct correlation between any of these physiochemical properties and the trends in bacterial Fe(III) reduction. Based on projected Al-dependent Fe(III) reduction rates, reduction rates of ferrihydrite fall below those of lepidocrocite and goethite at substitution levels equal to or greater than 18 mol% Al. Given the prevalence of Al substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe (hydr)oxide bioavailability and suggest a more prominent role of natural lepidocrocite and goethite phases in impacting DIRB activity in soils and sediments.  相似文献   

14.
Fe cycling at two sites in the Mediterranean Sea (southwest of Rhodes and in the North Aegean) has been studied, combining the pore water determination of nutrients, manganese, and iron, citrate-bicarbonate-dithionite (CDB) and total sediment extractions, X-ray diffraction, and 57Fe Mössbauer spectroscopy (MBS). At the Rhodes site, double peaks in the CDB-extractable Mn and Fe profiles indicate non-steady-state diagenesis. The crystalline iron oxide hematite, identified at both sites by room temperature (RT) MBS, appears to contribute little to the overall Fe reduction. MBS at liquid helium temperature (LHT) revealed that the reactive sedimentary Fe oxide phase was nanophase goethite, not ferrihydrite as is usually assumed. The pore water data at both sites indicates that upon reductive dissolution of nanophase goethite, the upward diffusing dissolved Fe2+ is oxidized by Mn oxides, rather than by nitrate or oxygen. The observed oxidation of Fe2+ by Mn oxides may be more common than previously thought but not obvious in sediments where the nitrate penetration depth coincides with the Mn oxide peak. At the Rhodes site, the solid-phase Fe(II) increase occurred at a shallower depth than the accumulation of dissolved Fe2+ in the pore water. The deeper relict Mn oxide peak acts as an oxidation barrier for the upward diffusing dissolved Fe2+, thereby keeping the pore water Fe2+ at depth. At the North Aegean site, the solid-phase Fe(II) increase occurs at approximately the same depth as the increase in dissolved Fe2+ in the pore water. Overall, the use of RT and cryogenic MBS provided insight into the solid-phase Fe(II) gradient and allowed identification of the sedimentary Fe oxides: hematite, maghemite, and nanophase goethite.  相似文献   

15.
The pool of iron oxides, available in sediments for reductive dissolution, is usually estimated by wet chemical extraction methods. Such methods are basically empirically defined and calibrated against various synthetic iron oxides. However, in natural sediments, iron oxides are present as part of a complex mixture of iron oxides with variable crystallinity, clays and organics etc. Such a mixture is more accurately described by a reactive continuum covering a range from highly reactive iron oxides to non-reactive iron oxide. The reactivity of the pool of iron oxides in sediment can be determined by reductive dissolution in 10 mM ascorbic acid at pH 3. Parallel dissolution experiments in HCl at pH 3 reveal the release of Fe(II) by proton assisted dissolution. The difference in Fe(II)-release between the two experiments is attributed to reductive dissolution of iron oxides and can be quantified using the rate equation J/m0 = k′(m/m0)γ, where J is the overall rate of dissolution (mol s−1), m0 the initial amount of iron oxide, k′ a rate constant (s−1), m/m0 the proportion of undissolved mineral and γ a parameter describing the change in reaction rate over time. In the Rømø aquifer, Denmark, the reduction of iron oxides is an important electron accepting process for organic matter degradation and is reflected by the steep increase in aqueous Fe2+ over depth. Sediment from the Rømø aquifer was used for reductive dissolution experiments with ascorbic acid. The rate parameters describing the reactivity of iron oxides in the sediment are in the range k′ = 7·10−6 to 1·10−3 s−1 and γ = 1 to 2.4. These values are intermediate between a synthetic 2-line ferrihydrite and a goethite. The rate constant increases by two orders of magnitude over depth suggesting an increase in iron oxide reactivity with depth. This increase was not captured by traditional oxalate and dithionite extractions.  相似文献   

16.
Sediments from the Red River and from an adjacent floodplain aquifer were investigated with respect to the speciation of Fe and As in the solid phase, to trace the diagenetic changes in the river sediment upon burial into young aquifers, and the related mechanisms of arsenic release to the groundwater. Goethite with subordinate amounts of hematite were, using Mössbauer spectroscopy, identified as the iron oxide minerals present in both types of sediment. The release kinetics of Fe, As, Mn and PO4 from the sediment were investigated in leaching experiments with HCl and 10 mM ascorbic acid, both at pH 3. From the river sediments, most of the Fe and As was mobilized by reductive dissolution with ascorbic acid while HCl released very little Fe and As. This suggests As to be associated with an Fe-oxide phase. For oxidized aquifer sediment most Fe was mobilized by ascorbic acid but here not much As was released. However, the reduced aquifer sediments contained a large pool of Fe(II) and As that is readily leached by HCl, probably derived from an unidentified authigenic Fe(II)-containing mineral which incorporates As as well. Extraction with ascorbic acid indicates that the river sediments contain both As(V) and As(III), while the reduced aquifer sediment almost exclusively releases As(III). The difference in the amount of Fe(II) leached from river and oxidized aquifer sediments by ascorbic acid and HCl, was attributed to reductive dissolution of Fe(III). The reactivity of this pool of Fe(III) was quantified by a rate law and compared to that of synthetic iron oxides. In the river mud, Fe(III) had a reactivity close to that of ferrihydrite, while the river sand and oxidized aquifer sediment exhibited a reactivity ranging from lepidocrocite or poorly crystalline goethite to hematite. Mineralogy by itself appears to be a poor predictor of the iron oxide reactivity in natural samples using the reactivity of synthetic Fe-oxides as a reference. Sediments were incubated, both unamended and with acetate added, and monitored for up to 2 months. The river mud showed the fastest release of both Fe and As, while the effect of acetate addition was minor. This suggests that the presence of reactive organic carbon is not rate limiting. In the case of the river and aquifer sediments, the release of Fe and As was always stimulated by acetate addition and here reactive organic carbon was clearly the rate limiting factor. The reduced aquifer sediment apparently can sustain slower but prolonged microbially-driven release of As. The highly reactive pools of Fe(III) and As in the river mud could be due to reoxidation of As and Fe contained in the reducing groundwater from the floodplain aquifers that are discharging into the river. Deposition of the suspended mud on the floodplain during high river stages is proposed to be a major flux of As onto the floodplain and into the underlying aquifers.  相似文献   

17.
Application of the Fe isotope system to studies of natural rocks and fluids requires precise knowledge of equilibrium Fe isotope fractionation factors among various aqueous Fe species and minerals. These are difficult to obtain at the low temperatures at which Fe isotope fractionation is expected to be largest and requires careful distinction between kinetic and equilibrium isotope effects. A detailed investigation of Fe isotope fractionation between [FeIII(H2O)6]3+ and hematite at 98°C allows the equilibrium 56Fe/54Fe fractionation to be inferred, which we estimate at 103lnαFe(III)-hematite = −0.10 ± 0.20‰. We also infer that the slope of Fe(III)-hematite fractionation is modest relative to 106/T2, which would imply that this fractionation remains close to zero at lower temperatures. These results indicate that Fe isotope compositions of hematite may closely approximate those of the fluids from which they precipitated if equilibrium isotopic fractionation is assumed, allowing inference of δ56Fe values of ancient fluids from the rock record. The equilibrium Fe(III)-hematite fractionation factor determined in this study is significantly smaller than that obtained from the reduced partition function ratios calculated for [FeIII(H2O)6]3+ and hematite based on vibrational frequencies and Mössbauer shifts by [Polyakov 1997] and [Polyakov and Mineev 2000], and Schauble et al. (2001), highlighting the importance of experimental calibration of Fe isotope fractionation factors. In contrast to the long-term (up to 203 d) experiments, short-term experiments indicate that kinetic isotope effects dominate during rapid precipitation of ferric oxides. Precipitation of hematite over ∼12 h produces a kinetic isotope fractionation where 103lnαFe(III)-hematite = +1.32 ± 0.12‰. Precipitation under nonequilibrium conditions, however, can be recognized through stepwise dissolution in concentrated acids. As expected, our results demonstrate that dissolution by itself does not measurably fractionate Fe isotopes.  相似文献   

18.
Oxidation of the relatively iron sulfide-poor Dugald River zinc-lead lode in northwest Queensland and reaction of the acid solutions with carbonate has resulted in an undifferentiated gossan profile. The gossan is composed predominantly of quartz, goethite, hematite, barite, adularia, plumbian jarosite, plumbogummite and minor mica, chlorite, kaolinite and montmorillonite. Barite and adularia are formed by the breakdown of the barium feldspar hyalophane (K, Na, Ba)[(Al, Si)4O8] which occurs in the lode.Lead in the gossan is contained within the secondary minerals plumbogummite and plumbian jarosite, and in traces of anglesite and cerussite, whereas Zn occurs in the barite, secondary lead minerals and coronadite structures, and is adsorbed by iron oxides, phyllosilicates and carbonaceous matter. Only traces of zinc minerals smithsonite, goslarite and hemimorphite were detected.Use of Gresens' general metasomatic equation has enabled quantitative determination of compositional changes resulting from the oxidation of the ore. Silicon, Al, Ti and Ba are essentially immobile under the mildly acidic oxidizing conditions. In decreasing order of mobility Cd, Ca, S, Na, K, Mn, Mg, Zn, Ni and Cu, together with CO2 and Tl, have been leached from the gossan profile, while Ag, Sb, Se, As, Fe and Pb appear to have been added to the gossan, notably in a zone of solution-deposited secondary minerals where they have been concentrated, possibly as a result of leaching from the surface gossan.  相似文献   

19.
应用矿物磁测技术和X射线衍射研究氧化土中的磁性矿物   总被引:3,自引:2,他引:1  
卢升高  吕光烈 《矿物学报》1999,19(3):279-285
应用矿物磁测、X射线衍射和化学分析对氧化土的磁性矿物进行了研究。结果表明矿物磁测及磁分离技术与X射线衍射结合是鉴别土壤中磁性矿物的类型及其晶粒特征的有效方法,证明氧化土中的主要氧化铁矿物是赤铁矿和磁赤铁矿,针铁矿次之,磁铁矿偶见,其磁赤铁矿的含量可达1.62% ̄1.92%。土壤中磁性矿物的晶粒特征多以超顺磁性和稳定单畴态存在,认为磁性矿物的成因是通过缓慢的成土化学作用产生的。  相似文献   

20.
Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe-O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II)aq - oxide interaction will produce low δ56Fe values for Fe(II)aq, similar to that produced by Fe(II) oxidation, only small quantities of low-δ56Fe Fe(II)aq are formed by these processes. In contrast, DIR, which continually exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low-δ56Fe aqueous Fe(II) in many natural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号