首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The equation of transfer for interlocked multiplets has been solved by Laplace transformation and the Wiener-Hopf technique developed by Dasgupta (1978) considering two nonlinear forms of Planck function: i.e., (a) $$B{\text{ }}_{\text{v}} (T) = B(t) = b_0 + b_1 {\text{ }}e^{ - \alpha t} ,$$ (b) $$B{\text{ }}_{\text{v}} (T) = B(t) = b_0 + b_1 t + b_2 E_2 (t).$$ Solutions obtained by Dasgupta (1978) or by Chandrasekhar (1960) may be obtained from our solutions by dropping the nonlinear terms.  相似文献   

2.
We investigate the ‘equilibrium’ and stability of spherically-symmetric self-similar isothermal blast waves with a continuous post-shock flow velocity expanding into medium whose density varies asr ahead of the blast wave, and which are powered by a central source (a pulsar) whose power output varies with time ast ω?3. We show that:
  1. for ω<0, no physically acceptable self-similar solution exists;
  2. for ω>3, no solution exists since the mass swept up by the blast wave is infinite;
  3. ? must exceed zero in order that the blast wave expand with time, but ?<2 in order that the central source injects a finite total energy into the blast wave;
  4. for 3>ωmin(?)>ω>ωmax(?)>0, where $$\begin{gathered} \omega _{\min } (\varphi ){\text{ }} = {\text{ }}2[5{\text{ }} - {\text{ }}\varphi {\text{ }} + {\text{ }}(10{\text{ }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 )^{1/2} ]^2 [2{\text{ }} + {\text{ (10 }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 {\text{)}}^{{\text{1/2}}} ]^{ - 2} , \hfill \\ \omega _{\max } (\varphi ){\text{ }} = {\text{ }}2[5{\text{ }} - {\text{ }}\varphi {\text{ }} - {\text{ }}(10{\text{ }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 )^{1/2} ]^2 [2{\text{ }} - {\text{ (10 }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 {\text{)}}^{{\text{1/2}}} ]^{ - 2} , \hfill \\ \end{gathered} $$ two critical points exist in the flow velocity versus position plane. The physically acceptable solution must pass through the origin with zero flow speed and through the blast wave. It must also pass throughboth critical points if \(\varphi > \tfrac{5}{3}\) , while if \(\varphi< \tfrac{5}{3}\) it must by-pass both critical points. It is shown that such a solution exists but a proper connection at the lower critical point (for ?>5/3) (through whichall solutions pass with thesame slope) has not been established;
  5. for 3>ω>ωmin(?) it is shown that the two critical points of (iv) disappear. However a new pair of critical points form. The physically acceptable solution passing with zero flow velocity through the origin and also passing through the blast wave mustby-pass both of the new critical points. It is shown that the solution does indeed do so;
  6. for 3>ωmin(?)>ωmax(?)>ω it is shown that the dependence of the self-similar solution on either ω or ? is non-analytic and therefore, inferences drawn from any solutions obtained in ω>ωmax(?) (where the dependence of the solutionis analytic on ω and ?) are not valid when carried over into the domain 3>ωmin(?)>ωmax(?)>ω;
  7. all of the physically acceptable self-similar solutions obtained in 3>ω>0 are unstable to short wavelength, small amplitude but nonself-similar radial velocity perturbations near the origin, with a growth which is a power law in time;
  8. the physical self-similar solutions are globally unstable in a fully nonlinear sense to radial time-dependent flow patterns. In the limit of long times, the nonlinear growth is a power law in time for 5<ω+2?, logarithmic in time for 5>ω+2?, and the square of the logarithm in time for 5=ω+2?.
The results of (vii) and (viii) imply that the memory of the system to initial and boundary values does not decay as time progresses and so the system does not tend to a self-similar form. These results strongly suggest that the evolution of supernova remnants is not according to the self-similar form.  相似文献   

3.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

4.
We have investigated the resonances due to the perturbations of a geo-centric synchronous satellite under the gravitational forces of the Sun, the Moon and the Earth including it’s equatorial ellipticity. The resonances at the points resulting from (i) the commensurability between \(\dot{\theta}_{0}\) (steady-state orbital angular rate of the satellite) and \(\dot{\theta}_{m}\) (angular velocity of the moon around the earth) and (ii) the commensurability between \(\dot{\theta}_{0}\) and \(\dot{\psi}_{0}\) (steady-state regression rate of the synchronous satellite) are analyzed. The amplitude and the time period of the oscillation have been determined by using the procedure as given in Brown and Shook (Planetary Theory, Cambridge University Press, Cambridge, 1933). We have observed that as θ m (0°θ m ≤45°) and ψ (0°ψ≤135°) increase, the amplitude decreases and the time period also decreases. We have also shown the effect of ψ on amplitude and time period for 0°Γ≤45°, where Γ is the angle measured from the minor axis of the earth’s equatorial ellipse to the projection of the satellite on the plane of the equator.  相似文献   

5.
The possibility of chemical ‘trapping’ of the Ar+ ion in the reaction $$v{\text{ }} + {\text{ }}^{{\text{37}}} {\text{Cl}} \to {\text{ }}^{{\text{37}}} {\text{Ar}}^{\text{ + }} + {\text{ e}}^ - ,$$ when it takes place in tetrachloroethylene (C2Cl4) liquid, is examined in detail. It is concluded that if trapping does take place, the rate is much smaller than the charge neutralization rate. Therefore, this niechanism cannot explain the observed small rate of Ar production in the Brookhaven solar neutrino experiment. A detailed examination of a number of experiments which are sensitive to possible trapping lends strong support to this conclusion.  相似文献   

6.
If a satellite orbit is described by means of osculating Jacobi α's and β's of a separable problem, the paper shows that a perturbing forceF makes them vary according to $$\dot \alpha _\kappa = {\text{F}} \cdot \partial {\text{r/}}\partial \beta _k {\text{ }}\dot \beta _k = {\text{ - F}} \cdot \partial {\text{r/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A1)}}$$ Herer is the position vector of the satellite andF is any perturbing force, conservative or non-conservative. There are two special cases of (A1) that have been previously derived rigorously. If the reference orbit is Keplerian, equations equivalent to (A1), withF arbitrary, were derived by Brouwer and Clemence (1961), by Danby (1962), and by Battin (1964). IfF=?gradV 1(t), whereV 1 may or may not depend explicitly on the time, Equations (A1) reduce to the well known forms (e.g. Garfinkel, 1966) $$\dot \alpha _\kappa = {\text{ - }}\partial V_1 {\text{/}}\partial \beta _k {\text{ }}\dot \beta _k = \partial V_1 {\text{/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A2)}}$$ holding for all separable reference orbits. Equations (A1) can of course be guessed from Equations (A2), if one assumes that \(\dot \alpha _k (t)\) and \(\dot \beta _k (t)\) depend only onF(t) and thatF(t) can always be modeled instantaneously as a potential gradient. The main point of the present paper is the rigorous derivation of (A1), without resort to any such modeling procedure. Applications to the Keplerian and spheroidal reference orbits are indicated.  相似文献   

7.
In a static gravitational field the paths of light are curved, as noticed by H. Weyl. This property can bea priori stated for aV 3 Riemannian manifold: through any two points ofV 3 it is possible to draw two families of curves, the straight lines of Euclidean geometry and the photon trajectoriesz. We can perform a fibration of the Galilean space-time in an original way, by taking thez-trajectories of the photons as the base, the isochronic surfaces as fibres, and ‘the equal length time on az trajectory to reach a given point’ as the equivalence relation. The straight lines of Euclidean geometry can then carry the classical mechanics timet, and thez trajectories can carry the optics time t. These times are related by dt=F(x,t) dt. If we class the Universe as a pseudo-Riemannian manifold of normal hyperbolic typeC , the time t determined above can be taken as the time coordinate inV 4. Under these conditions we have \(d\overline s ^2 \) =F 2 \(d\overline s ^2 \) , where \(d\overline s ^2 \) is the metric of the Riemannian manifold, conforming to the metric ds 2 and allowing t as the cosmic time. We can then use the results previously achieved by the author (Peton, 1979) and write: 1 +Z G =F(A s,t s,)/F(Aos,t o) wherez G denotes the shift of the spectral lines due to the metric. In the case of relative motion betweenO andS, we have $${\text{1 + z' = (1 + }}z_{\text{G}} {\text{)(1 + }}\beta _{\text{r}} {\text{)(1 }} - {\text{ }}\beta ^2 {\text{)}}^{ - 1/2} $$ The Doppler-Fizeau effect therefore appears as a result of the application of the Fermat principle.  相似文献   

8.
This paper summarises an investigation of chaos in a toy potential which mimics much of the behaviour observed for the more realistic triaxial generalisations of the Dehnen potentials, which have been used to model cuspy triaxial galaxies both with and without a supermassive black hole. The potential is the sum of an anisotropic harmonic oscillator potential, ${\text{V}}_{\text{0}} = \frac{1}{2}\left( {a^2 x^2 + b^2 y^2 + c^2 z^2 } \right)$ , and aspherical Plummer potential, ${\text{V}}_{\text{P}} = M_{BH} /\sqrt {r^2 + \varepsilon ^2 } $ , with $r^2 = x^2 + y^2 + z^2$ . Attention focuses on three issues related tothe properties of ensembles of chaotic orbits which impact on chaotic mixing and the possibility of constructing self-consistent equilibria:(1) What fraction of the orbits are chaotic? (2) How sensitive are the chaotic orbits, that is, how large are their largest (short time) Lyapunov exponents? (3) To what extent is the motion of chaotic orbits impeded by Arnold webs, that is, how 'sticky' are the chaotic orbits? These questions are explored as functions of the axis ratio a: b: c, black hole mass M BH, softening length ε, and energy E with the aims of understanding how the manifestations of chaos depend onthe shape of the system and why the black hole generates chaos. The simplicity of the model makes it amenable to a perturbative analysis. That it mimics the behaviour of more complicated potentials suggests that much of this behaviour should be generic.  相似文献   

9.
A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's function as a nonlinear function of optical depth, viz. $$B{\text{ }}_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method developed by Busbridge (1953).  相似文献   

10.
The quintessence dark energy model with a kinetic coupling to gravity within the Palatini formalism is studied in this paper. Two different coupling forms: $\hat{R}\partial^{\mu}\phi\partial_{\mu}\phi$ and $\hat {R}_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi$ are analyzed, respectively. We find that both the model with the $\hat{R}\partial^{\mu}\phi\partial_{\mu}\phi$ coupling and the one with the $\hat{R}_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi$ coupling can realize the phantom divide line crossing from phantom to quintessence at late time for its effective equation-of-state. Furthermore, the former can behave like phantom. These features are different from those found in the $\hat {R}\phi^{2}$ coupling case.  相似文献   

11.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

12.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

13.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

14.
Dynamical systems with three degrees of freedom can be reduced to the study of a fourdimensional mapping. We consider here, as a model problem, the mapping given by the following equations: $$\left\{ \begin{gathered} x_1 = x_0 + a_1 {\text{ sin (}}x_0 {\text{ + }}y_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{)}} \hfill \\ y_1 = x_0 {\text{ + }}y_0 \hfill \\ z_1 = z_0 + a_2 {\text{ sin (}}z_0 {\text{ + }}t_0 {\text{)}} + b{\text{ sin (}}x_0 {\text{ + }}y_0 {\text{ + }}z_{\text{0}} {\text{ + }}t_{\text{0}} {\text{) (mod 2}}\pi {\text{)}} \hfill \\ t_1 = z_0 {\text{ + }}t_0 \hfill \\ \end{gathered} \right.$$ We have found that as soon asb≠0, i.e. even for a very weak coupling, a dynamical system with three degrees of freedom has in general either two or zero isolating integrals (besides the usual energy integral).  相似文献   

15.
This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v), \(\sqrt {F(\upsilon )} \) and \(\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-0em} {F(\upsilon )}}} \) are given, where $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2. Some interesting relations involving Legendre polynomials are also noted.  相似文献   

16.
Using γ-ray data detected by Fermi Large Area Telescope (LAT) and multi-wave band data for 35 TeV blazars sample, we have studied the possible correlations between different broad band spectral indices ( $\alpha_{\rm r.ir}$ , $\alpha_{\rm{r.o}}$ , $\alpha_{\rm r.x}$ , $\alpha_{\rm r.\gamma}$ , $\alpha_{\rm{ir.o}}$ , $\alpha_{\rm ir.x}$ , $\alpha_{\rm ir.\gamma}$ , $\alpha_{\rm o.x}$ , $\alpha_{\rm o.\gamma}$ , $\alpha_{\rm r.x}$ , $\alpha_{\rm x.\gamma}$ ) in all states (average/high/low). Our results are as follows: (1) For our TeV blazars sample, the strong positive correlations were found between $\alpha_{\rm r.ir}$ and $\alpha_{\rm{r.o}}$ , between $\alpha_{\rm r.ir}$ and $\alpha_{\rm r.x}$ , between $\alpha_{\rm r.ir}$ and $\alpha_{\rm r.\gamma}$ in all states (average/high/low); (2) For our TeV blazars sample, the strong anti-correlations were found between $\alpha_{\rm r.ir}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm ir.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm o.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\mathrm{ir.o}}$ and $\alpha_{\rm o.\gamma}$ , between $\alpha_{\rm r.x}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\rm ir.x}$ and $\alpha_{\rm x.\gamma}$ in all states (average/high/low). The results suggest that the synchrotron self-Compton radiation (SSC) is the main mechanism of high energy γ-ray emission and the inverse Compton scattering of circum-nuclear dust is likely to be a important complementary mechanism for TeV blazars. Our results also show that the possible correlations vary from state to state in the same pair of indices, Which suggest that there may exist differences in the emitting process and in the location of the emitting region for different states.  相似文献   

17.
The planar problem of three bodies is described by means of Murnaghan's symmetric variables (the sidesa j of the triangle and an ignorable angle), which directly allow for the elimination of the nodes. Then Lemaitre's regularized variables \(\alpha _j = \sqrt {(\alpha ^2 - \alpha _j )}\) , where \(\alpha ^2 = \tfrac{1}{2}(a_1 + a_2 + a_3 )\) , as well as their canonically conjugated momenta are introduced. By finally applying McGehee's scaling transformation \(\alpha _j = r^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} \tilde \alpha _j\) , wherer 2 is the moment of inertia a system of 7 differential equations (with 2 first integrals) for the 5-dimensional triple collision manifold \(T\) is obtained. Moreover, the zero angular momentum solutions form a 4-dimensional invariant submanifold \(N \subset T\) represented by 6 differential equations with polynomial right-hand sides. The manifold \(N\) is of the topological typeS 2×S 2 with 12 points removed, and it contains all 5 restpoint (each one in 8 copies). The flow on \(T\) is gradient-like with a Lyapounov function stationary in the 40 restpoints. These variables are well suited for numerical studies of planar triple collision.  相似文献   

18.
Spectra of Hα, Hβ and Hδ have been taken under good seeing conditions with the vacuum tower telescope of Sacramento Peak Observatory. Intensity curves are given at various wavelengths in these lines to permit further comparison with a theoretical model. Moreover, considering in each case the range of height in which the lines are almost optically thin and using a few approximations, the following results are derived: between 2000 and 6000 km above the limb the average thermal + turbulent velocity of the atoms is found to increase from 20 km s?1 to 30 km s?1 and the mean number of hydrogen atoms per cm3 in level 2 is given by $$\log n_2 {\text{ = }}4.5{\text{ }} - {\text{ 0}}{\text{.00056(}}z - 2000)$$ z being the altitude above the limb in km. For line profile computations a new interpolation formula is presented; it gives good profiles with a small number of scans, saving microphotometer time.  相似文献   

19.
A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's function as a nonlinear function of optical depth, viz., $$B_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method of discrete ordinates originally due to Chandrasekhar.  相似文献   

20.
A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988??C?2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle ( $\overline{\Delta\phi}$ ), mean shear angle of the vector magnetic field ( $\overline{\Delta\psi}$ ), mean absolute vertical current density ( $\overline{|J_{z}|}$ ), mean absolute current helicity density ( $\overline{|h_{\mathrm{c}}|}$ ), absolute twist parameter (|?? av|), mean free magnetic energy density ( $\overline{\rho_{\mathrm{free}}}$ ), effective distance of the longitudinal magnetic field (d E), and modified effective distance (d Em) of each photospheric vector magnetogram. Parameters $\overline{|h_{\mathrm{c}}|}$ , $\overline{\rho_{\mathrm{free}}}$ , and d Em show higher correlations with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters $\overline {\Delta\phi}$ , $\overline{\Delta\psi}$ , $\overline{|J_{z}|}$ , |?? av|, and d E show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号