首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research is motivated by the recent IGS Ionosphere Working Group recommendation issued at the IGS 2010 Workshop held in Newcastle, UK. This recommendation encourages studies on the evaluation of the application of COSMIC radio occultation profiles for additional IGS global ionosphere map (GIM) validation. This is because the reliability of GIMs is crucial to many geodetic applications. On the other hand, radio occultation using GPS signals has been proven to be a promising technique to retrieve accurate profiles of the ionospheric electron density with high vertical resolution on a global scale. However, systematic validation work is still needed before using this powerful technique for sounding the ionosphere on a routine basis. In this paper, we analyze the properties of the ionospheric electron density profiling retrieved from COSMIC radio occultation measurements. A comparison of radio occultation data with ground-based measurements indicates that COSMIC profiles are usually in good agreement with ionosonde profiles, both in the F2 layer peak electron density and the bottom side of the profiles. For this comparison, ionograms recorded by European ionospheric stations (DIAS network) in 2008 were used.  相似文献   

2.
An improved algebraic reconstruction technique (IART) is presented for the tomographic reconstruction of ionospheric electron density (IED). This method applies the total electron content (TEC) measurements to invert the spatial distribution of the IED from a set of apriori IED distributions. In this new method, a data-driven adjustment of the relaxation parameter is performed to improve the computation efficiency and image quality of the classical algebraic reconstruction technique (ART). In addition, the new algorithm is also combined with ionospheric space discretization technique to simplify the inversion of IED, and it applies CHAMP occultation data to improve the vertical resolution. A numerical simulation experiment is carried out to validate the reliability of the new method. It is then applied to the inversion of IED from real GPS data. Inverted results show that the IART algorithm has better accuracy and efficiency than the conventional ART algorithm. The reliability of the IART algorithm is also validated by ionosonde data recorded at Wuhan station.  相似文献   

3.
The FORMOSAT-3/COSMIC mission has provided ample ionospheric electron density profiles retrieved from the global positioning system radio occultation technique. Currently, there can be more than 2,000 electron density profiles acquired per day covering the global ionosphere from altitude 90 to 800 km. Utilizing the advantage of such a complete coverage, we statistically analyze how the ionospheric electron parameters NmF2, hmF2, and TEC respond to the geomagnetic index Dst for different magnetic latitudes and magnetic local time (MLT) and on quiet and storm times. A data set of 24 months is used for this study, in which most of the results focus on the low-latitude dayside regions. The results indicate that, in general, NmF2, hmF2, and TEC decrease as Dst increases at all seasons. Only during the sudden commencement phase (SSC) of storm events, NmF2 and TEC appear to increase as Dst increases.  相似文献   

4.
The ionospheric radiance and electron density observed by the tiny ionospheric photometer (TIP) and GPS occultation experiment (GOX) payloads on FORMOSAT-3/COSMIC satellites are applied to determine the boundaries of the auroral oval and its width in the winter nighttime ionosphere for both hemispheres. The TIP collects ionospheric emission at 135.6 nm due to electron impact excitation, while the GOX offers ionospheric electron density profiles with radio occultation (RO) technique. Comparison between them shows similar patterns of the plasma structure in the polar caps. The mean width of the auroral bands ranges between about 2 and 11° latitude in the winter nighttime and it varies with longitudes. The comparison by month suggests that the mean radius of the auroral ovals varies with the intensity of the auroral radiance.  相似文献   

5.
以MSIS90大气模型、3D NeUoG电离层模型和IGRF11地磁场模型为基础,用三维射线追踪法模拟了无线电掩星中电离层二阶项残差的变化,研究了其在不同太阳活动强度、不同地方时、不同方位角下的变化,以及在全球的分布特征。结果表明,二阶项残余误差通常在亚cm级水平,但在较高太阳活动水平下,或当掩星发生地位于中低纬度地区,掩星方位角约为0°或180°时,二阶项残余误差可达到cm级,而且在全球分布呈现出“三峰”结构。  相似文献   

6.
与传统的无线电探空、雷达探测等手段相比,GNSS掩星技术为大气探测提供了一个强有力的工具,其具有无校准、全天候、精度高、垂直分辨率高、全球均匀覆盖等特点。介绍了利用GNSS掩星技术获取地球大气温、压、湿等相关参数大小的研究现状。同时,提出了GNSS掩星技术在气候研究领域的发展方向,将拓宽GNSS掩星技术在全球气候变化研究中的应用。  相似文献   

7.
The Abel inversion is a straightforward tool to retrieve high-resolution vertical profiles of electron density from GPS radio occultations gathered by low earth orbiters (LEO). Nevertheless, the classical approach of this technique is limited by the assumption that the electron density in the vicinity of the occultation depends only on height (i.e., spherical symmetry), which is not realistic particularly in low-latitude regions or during ionospheric storms. Moreover, with the advent of recent satellite missions with orbits placed around 400 km (such as CHAMP satellite), an additional issue has to be dealt with: the treatment of the electron content above the satellite orbits. This paper extends the performance study of a method, proposed by the authors in previous works, which tackles both problems using an assumption of electron-density separability between the vertical total electron content and a shape function. This allows introducing horizontal information into the classic Abel inversion. Moreover, using both positive and negative elevation data makes it feasible to take into account the electron content above the LEO as well. Different data sets involving different periods of the solar cycle, periods of the day and satellites are studied in this work, confirming the benefits of this improved Abel transform approach.  相似文献   

8.
The FORMOSAT-3/COSMIC mission is a microsatellite mission for weather forecast, climate monitoring, and atmospheric, ionospheric and geodesy research. This mission is a collaborative Taiwan-USA science experiment to deploy a constellation of six microsatellites in low Earth orbits. The mission life is 2 years with a goal of 5 years. The final mission orbit has an altitude of 750–800 km. Each satellite consists of three science payloads: global positioning system (GPS) occultation experiment (GOX) payload, tiny ionospheric photometer (TIP) and tri-band beacon (TBB). The GOX will collect the GPS signals for the study on atmosphere, ionosphere, and geodesy. The TIP and TBB can provide the electron distribution information for ionospheric research. The deployment of the FORMOSAT-3 constellation and the resulting influence on the occultation sounding distributions are reported. Details are also given on GOX, TIP, and TBB payload operations and the contributions of the Taiwan Science Team.  相似文献   

9.
In 1994, Hajj et al. (1994) proposed the use of radio occultation data in ionospheric imaging. The advantages gained by including this data source are examined in this paper. Many data sources including ground-based and satellite-based observations are available for the events of the April 2002 ionospheric disturbance. This period has been chosen to study simultaneous images of the disturbed ionosphere over the USA and Europe. A 4D tomographic imaging technique known as Multi-instrument Data Analysis System (MIDAS) (Mitchell and Spencer, 2003) is applied in this study. The primary purpose of the study is to compare images produced with and without the use of radio-occultation data. The work investigates whether GPS occultation combined with ground-based GPS data improves the determination of peak height and peak density in the images. The results indicate that the occultation data improve both the peak height and the peak density in the images. The use of ionosonde data is also examined and the results are compared between the USA and Europe.  相似文献   

10.
将在一定时空限定范围内的不同低轨卫星COSMIC、GRACE、CHAMP、FY3C的电离层掩星电子密度剖面定义为一个掩星对来对比分析不同类型掩星电离层产品。结果表明:COSMIC掩星对之间的电子密度剖面整体轮廓符合得很好,电子密度剖面主要在250 km以下和500 km以上存在较大的偏差,250~500 km的电子密度整体偏差较小,统计得到的COSMIC掩星对的电子密度参量NmF2和hmF2的相关系数能分别达到0.99和0.97,具有高度相关性,不同COSMIC卫星之间没有明显的系统误差;COSMIC、GRACE、CHAMP和FY3C不同低轨卫星间的电子密度剖面略有差异,通过统计电子密度参量NmF2和hmF2之间的相关系数,COSMIC和CHAMP的相关系数分别为0.95和0.86,COSMIC和GRACE的相关系数分别为0.98和0.94,COSMIC和FY3C的相关系数分别为0.96和0.92,不同掩星类型之间的电子密度参量之间也具有高度相关性,验证了不同卫星任务GPS掩星电离层剖面的一致性。  相似文献   

11.
掩星观测能够提供地面到低轨卫星轨道高度处的整个电离层电子密度剖面,对于顶部电离层的研究有重要的作用。本文利用COSMIC(constellation observing system for meteorology ionosphere and climate)掩星数据反演了电子密度剖面,提取了F2层峰值高度(hmF2)、F2层峰值密度(NmF2)、垂直标尺高(vertical scale height,VSH)等电离层参数,研究了南极地区的F2层在太阳活动周期内的变化、年际变化、周日变化等,并且重点分析了南极地区的顶部电离层的垂直结构特征,尤其是威德尔海异常在垂直方向上的变化。结果表明,整个南极的hmF2每日均值在250~300 km左右,NmF2每日均值在1~8×1011 el/m3之间,VSH每日均值在100~250 km,威德尔海异常主要表现在顶部电子密度的增强和底部电子密度的减少。  相似文献   

12.
A local mechanism for strong ionospheric effects on radio occultation (RO) global positioning satellite system (GPS) signals is described. Peculiar zones centered at the critical points (the tangent points) in the ionosphere, where the gradient of the electron density is perpendicular to the RO ray trajectory, strongly influence the amplitude and phase of RO signals. It follows from the analytical model of local ionospheric effects that the positions of the critical points depend on the RO geometry and the structure of the ionospheric disturbances. Centers of strong ionospheric influence on RO signals can exist, for example, in the sporadic E-layers, which are inclined by 3–6° relative to the local horizontal direction. Also, intense F2 layer irregularities can contribute to the RO signal variations. A classification of the ionospheric influence on the GPS RO signals is introduced using the amplitude data, which indicates different mechanisms (local, diffraction, etc.) for radio waves propagation. The existence of regular mechanisms (e.g., local mechanism) indicates a potential for separating the regular and random parts in the ionospheric influence on the RO signals.  相似文献   

13.
The FORMOSAT-3/COSMIC satellite constellation has become an important tool toward providing global remote sensing data for sounding of the atmosphere of the earth and the ionosphere in particular. In this study, the electron density profiles are derived using the Abel transform inversion. Some drawbacks of this transform in LEO GPS sounding can be overcome by considering the separability concept: horizontal gradients of vertical total electron content (VTEC) information are incorporated by the inversion method, providing more accurate electron density determinations. The novelty presented in this paper with respect to previous works is the use of the phase change between the GPS transmitter and the LEO receiver as the main observable instead of the ionospheric combination of carrier phase observables for the implementation of separability in the inversion process. Some of the characteristics of the method when applied to the excess phase are discussed. The results obtained show the equivalence of both approaches but the method exposed in this work has the potentiality to be applied to the neutral atmosphere. Recent FORMOSAT-3/COSMIC data have been processed with both the classical Abel inversion and the separability approach and evaluated versus colocated ionosonde data.  相似文献   

14.
电离层参量的提取是开展电离层研究的基础,而数据同化技术则是获取电离层参量的一种重要手段。以NeQuick模型的输出作为背景场,Kalman滤波作为同化算法,利用数据同化技术实现区域电离层TEC重构,结果表明,数据同化方法重构的倾斜总电子含量(TEC)和垂直TEC与实测值较为一致。相比NeQuick模型及全球电离层地图(GIM)数据,数据同化方法重构得到的TEC的平均误差和标准差均有明显的降低,实测数据验证了数据同化技术在区域TEC重构中的精度和可靠性。  相似文献   

15.
We examine for the first time the ionospheric electron density profiles concurrently observed by the GPS occultation experiment (GOX) onboard the FORMOSAT-3/COSMIC (F3/C) and the ground-based digisonde portable sounder DPS-4 at Jicamarca (12°S, 283°W, 1°N geomagnetic) in 2007. Our results show that the F3/C generally underestimates the F2-peak electron density NmF2 and the F2-peak height hmF2. On the other hand, when the equatorial ionization anomaly (EIA) pronouncedly appears during daytime, the total electron content (TEC) derived from the radio occultation of the GPS signal recorded by the F3/C GOX is significantly enhanced. This results in the NmF2 at Jicamarca being overestimated by the Abel inversion on the enhanced TEC during the afternoon period.  相似文献   

16.
介绍了精密单点定位的基本原理,利用IGS数据和产品验证了对流层天顶延迟和电离层总电子含量的解算正确性,给出了青岛地区对流层折射率和电离层电子密度剖面的探测结果。实验结果表明:精密单点定位技术应用于空间环境探测是可行的。  相似文献   

17.
Since 1995, the global positioning system (GPS) has been exploited by the means of the radio occultation (RO) method to obtain the vertical profiles of refractivity, temperature, pressure, and water vapor in the neutral atmosphere and electron density in the ionosphere. Applying the RO method to the study of the Earths atmosphere was demonstrated for the first time with the GPS/MET experiment. Since then, several satellites with GPS receivers, suitable for RO experiments, have been launched including Oersted, SUNSAT, CHAMP, SAC-C, and GRACE. Future RO investigations that are planned now include FORMOSAT3/COSMIC and Terra-SAR missions. New elements in the RO technology are required to meet the goals of improving the accuracy and broadening the potential of the RO method. In this paper, a methodological review of RO investigations is presented to emphasize new directions in applying the RO method: measuring the vertical gradients of the refractivity in the atmosphere and electron density in the lower ionosphere, determination of the temperature regime in the upper stratosphere, investigation of the internal wave activity in the atmosphere, and study of the ionospheric disturbances on a global scale. These new directions may be relevant for investigating the relationships between processes in the atmosphere and mesosphere, the study of thermal regimes in the intermediate heights of the upper stratosphere—lower mesosphere, and the analysis of the influence of the space weather phenomena on the lower ionosphere.  相似文献   

18.
This paper presents a technique for ingesting ground- and space-based dual-frequency GPS observations into a semi-empirical global electron density model. The NeQuick-2 model is used as the basis for describing the global electron density distribution. This model is mainly driven by the F2 ionosphere layer parameters (i.e. the electron density, N m F2, and the height, h m F2 of the F2 peak), which, in the absence of directly measured values, are computed from the ITU-R database (ITU-R 1997). This database was established using observations collected from 1954 to 1958 by a network of around 150 ionospheric sounders with uneven global coverage. It allows computing monthly median values of N m F2 and h m F2 (intra-month variations are averaged), for low and high solar activity. For intermediate solar activity a linear interpolation must be performed. Ground-based GNSS observations from a global network of ~350 receivers are pre-processed in order to retrieve slant total electron content (sTEC) information, and space-based GPS observations (radio occultation data from the FORMOSAT-3/COSMIC constellation) are pre-processed to retrieve electron density (ED) information. Both, sTEC and ED are ingested into the NeQuick-2 model in order to adapt N m F2 and h m F2, and reduce simultaneously both, the observed minus computed sTEC and ED differences. The first experimental results presented in this paper suggest that the data ingestion technique is self consistent and able to reduce the observed minus computed sTEC and ED differences to ~25–30% of the values computed from the ITU-R database. Although sTEC and ED are both derived from GPS observations, independent algorithm and models are used to compute their values from ground-based GPS observations and space-based FORMOSAT-3/COSMIC radio occultations. This fact encourages us to pursue this research with the aim to improve the results presented here and assess their accuracy in a reliable way.  相似文献   

19.
Since the proof-of-concept GPS/Meteorology (GPS/MET) experiment successfully demonstrated active limb sounding of the Earth’s neutral atmosphere and ionosphere via GPS radio occultation (RO) from low Earth orbit, the developments of electron density (n e) retrieval techniques and powerful processing systems have made a significant progress in recent years. In this study, the researches of n e profiling from space-based GPS RO observations are briefly reviewed. Applying to the Formosat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) data, we also present a compensatory Abel inversion technique including the effects of large-scale horizontal gradients and/or inhomogeneous ionospheric n e obtained from an improved near real-time phenomenological model of the TaiWan Ionospheric Model. The results were evaluated by the ionosonde foF2 and foE data and showed improvements of rms foF2 difference from 29.2 to 16.5% in relative percentage and rms foE difference from 54.2 to 32.7% over the standard Abel inversion.  相似文献   

20.
Most of the space-geodetic observation techniques can be used for modeling the distribution of free electrons in the Earth’s ionosphere. By combining different techniques one can take advantage of their different spatial and temporal distributions as well as their different observation characteristics and sensitivities concerning ionospheric parameter estimation. The present publication introduces a procedure for multi-dimensional ionospheric modeling. The model consists of a given reference part and an unknown correction part expanded in terms of B-spline functions. This approach is used to compute regional models of Vertical Total Electron Content (VTEC) based on the International Reference Ionosphere (IRI 2007) and GPS observations from terrestrial Global Navigation Satellite System (GNSS) reference stations, radio occultation data from Low Earth Orbiters (LEOs), dual-frequency radar altimetry measurements, and data obtained by Very Long Baseline Interferometry (VLBI). The approach overcomes deficiencies in the climatological IRI model and reaches the same level of accuracy than GNSS-based VTEC maps from IGS. In areas without GNSS observations (e.g., over the oceans) radio occultations and altimetry provide valuable measurements and further improve the VTEC maps. Moreover, the approach supplies information on the offsets between different observation techniques as well as on their different sensitivity for ionosphere modeling. Altogether, the present procedure helps to derive improved ionospheric corrections (e.g., for one-frequency radar altimeters) and at the same time it improves our knowledge on the Earth’s ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号