首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dust acoustic waves are investigated in plasma system containing dynamic and streaming dust, supertherrmal electrons and ions. Linear and nonlinear studies are carried out and elaborated with the help of parameters taken for Saturn’s F-ring. An energy integral equation is obtained by using the Sagdeev potential approach, and results are displayed by solving it analytically and numerically. The dependence of nonlinear structures on κ values, the ratio of electron to dust equilibrium densities μ ed , Mach number M, and dust streaming speed v d0 have been presented. The streaming speed appears as a destructive partner for the Mach number M in the pseudoenergy equation and hence plays a dominant modifying role in the formation of nonlinear structures. It plays a destructive role for some of the solitons and works as a source, for the emergence of new solitons (region). Formation of double layers are also investigated and shown that the amplitude, width and existence of double layers structures are predominantly affected by the presence of superthermal electrons, ions, and streaming dust beam.  相似文献   

2.
Nonlinear dynamics of electron acoustic waves (EAWs) in a plasma consisting of stationary ions, cool inertial electrons and hot electrons having a nonextensive distribution is studied. Under transverse perturbations, the nonlinear wave can be described by the general form of the Davey-Stewartson (DS) equations. The reductive perturbation technique is employed to derive Davey-Stewartson equations. From the solutions of these equations, amplitude modulation properties and stability regions of EAWs are studied in two-dimensional plasma. Further, the influence of nonextensivity of hot electrons (via q) on the characteristics of EAWs has been analysed.  相似文献   

3.
Bifurcations of nonlinear electron acoustic solitary waves and periodic waves in an unmagnetized quantum plasma with cold and hot electrons and ions has been investigated. The one dimensional quantum hydrodynamic model is used to study electron acoustic waves (EAWs) in quantum plasma. Applying the well known reductive perturbation technique (RPT), we have derived a Korteweg-de Vries (KdV) equation for EAWs in an unmagnetized quantum plasma. By using the bifurcation theory and methods of planar dynamical systems to this KdV equation, we have presented the existence of two types of traveling wave solutions which are solitary wave solutions and periodic traveling wave solutions. Under different parametric conditions, some exact explicit solutions of the above waves are obtained.  相似文献   

4.
5.
A first theoretical work is presented to study the propagation of two-solitons in an electron acoustic waves (EAWs) within the theoretical framework of the Tsallis statistical mechanics. For this purpose, cylindrical and spherical Korteweg-de Vries (KdV) equations are derived for electron acoustic solitary waves (EASWs) in an unmagnetized three species plasma system comprised of cold electrons, immobile ions and hot electrons featuring Tsallis statistics by employing the standard reductive perturbation method. The effects of electron nonextensivity and the fractional number density of the hot electrons relative to that of the cold ones number density (α) on the profiles of two-soliton structures are investigated numerically. Results would be helpful for understanding the localized structures that may occur in space plasmas.  相似文献   

6.
The propagation of nonlinear waves in a quantum plasma is studied. A quantum magnetohydrodynamic (QHD) model is used to take into account the effects of quantum force associated with the Bohm potential. Using the standard reductive perturbation technique, nonlinear Kadomtsev-Petviashvili (KP) equation is obtained to study the properties of ion acoustic waves (IAWs). For such waves the amplitude of the solitary waves is independent of the quantum parameter H (the ratio of the electron plasmon to electron Fermi energy), whereas the width and energy of the soliton increases with H.  相似文献   

7.
A theoretical investigation is carried out for the nonlinear properties of small amplitude electron acoustic solitary waves (EAWs) in an unmagnetized collisionless plasma consisting of a cold electron fluid and hot electrons obeying κ velocity distribution, and stationary ions. The Korteweg de Vries (KdV) equation that contains the lowest-order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (KdV-type) equation that accounts for the higher-order nonlinearity and dispersion is obtained. A stationary solution for equations resulting from higher-order perturbation theory has been found using the renormalization method. The effects of the spectral index κ and the higher-order corrections are found to significantly change the properties (viz. the amplitude, width, electric field ) of the EASWs. A comparison with the Viking Satellite observations in the dayside auroral zone are also discussed.  相似文献   

8.
9.
Properties of dust-ion acoustic solitary waves (DIASWs) in dusty plasmas composed of nonextensive electrons, cold fluid ions and stationary dust particles are investigated. The possibility of soliton formation and the effect of nonextensivity of the electron distribution on the soliton characters are studied using the pseudo-potential method. Regions of parameters in which a solitary wave can be propagated in the plasma is analyzed too. It is found that the solitary excitations strongly depend on the electron-ion density ratio (μ), Mach numbers (M) as well as the nonextensive parameter (q). It is shown that the domain of allowed Mach numbers depends drastically on the plasma parameters and especially on the electron nonextensivity. It is found that beyond a threshold value of the nonextensive parameter (q), dust-ion acoustic solitons are admitted.  相似文献   

10.
A consistent account of plasma turbulence in magnetohydrodynamics equations describing transport processes across the magnetic field is presented. The structure of the perpendicular shock wave generated in the solar atmosphere, as a result of either local disturbance of the magnetic field or dense plasma cloud motion with a frozen-in magnetic field, has been investigated. The region of parameters in the solar atmosphere at which the electron-ion relative drift velocity u exceeds the electron thermal velocity V eand generation of radio emission becomes possible, has been determined. The plasma turbulence inside the front has been shown, under conditions of solar corona, not to cause the oscillation structure of shock front to break down. Under chromospheric conditions, the shock profile is aperiodical. Then, the condition u > Vecan be satisfied and shock waves having an Alfvén Mach number M which exceeds the critical value M c 3.3 for aperiodical shock waves can exist (Eselevich et al., 1971a). Arguments are given in favour of the fact that perpendicular shock waves are generated in the Sun's atmosphere when dense plasma clouds, with a frozen-in magnetic field, are expanded.  相似文献   

11.
The propagation of nonlinear electron-acoustic waves (EAWs) in an unmagnetized collisionless plasma system consisting of a cold electron fluid, superthermal hot electrons and stationary ions is investigated. A reductive perturbation method is employed to obtain a modified Korteweg–de Vries (mKdV) equation for the first-order potential. The small amplitude electron-acoustic solitary wave, e.g., soliton and double layer (DL) solutions are presented, and the effects of superthermal electrons on the nature of the solitons are also discussed. But the results shows that the weak stationary EA DLs cannot be supported by the present model.  相似文献   

12.
Arbitrary amplitude electron acoustic (EA) solitary waves in a magnetized nonextensive plasma comprising of cool fluid electrons, hot nonextensive electrons, and immobile ions are investigated. The linear dispersion properties of EA waves are discussed. We find that the electron nonextensivity reduces the phase velocities of both modes in the linear regime: similarly the nonextensive electron population leads to decrease of the EA wave frequency. The Sagdeev pseudopotential analysis shows that an energy-like equation describes the nonlinear evolution of EA solitary waves in the present model. The effects of the obliqueness, electron nonextensivity, hot electron temperature, and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the boundary values of the permitted Mach number decreases with the nonextensive electron population, as well as with the electron nonextensivity index, q. It is also found that an increase in the electron nonextensivity index results in an increase of the soliton amplitude. A comparison with the Vikong Satellite observations in the dayside auroral zone is also taken into account.  相似文献   

13.
Starting from the equations of motion of a thin magnetic tube, the characteristic curves and velocities and compatibility relations are derived as basis for investigating its motion and for correctly formulating the problem of stationary solution. It is shown that the characteristic velocity of transverse waves is related to the Alfvén Mach number of the flow in the tube. When the flow velocity exceeds the critical value for the Kelvin-Helmholtz instability, transverse waves cease to exist.  相似文献   

14.
M. Kuperus 《Solar physics》1972,22(2):257-262
The directional dependence of the emission of sound waves in the solar atmosphere is studied. It is shown that quadrupole acoustic radiation generated in convective turbulence is strongly enhanced in the direction of the mean convective flow. The intensity in a direction with the convective velocity is proportional to (1 – M c cos)–17/2, where M c is the Mach number of the convective motion. The influence of the atmospheric cut off frequency on the transmitted acoustic spectrum is taken into account. It is suggested that low frequency atmospheric oscillations may modulate the flux of high frequency sound waves.  相似文献   

15.
In 1937 Dirac proposed the large number hypothesis (LNH). The idea was to explain that these numbers were large because the Universe is old. A time variation of certain “constants” was assumed. So far, no experimental evidence has significantly supported this time variation. Here we present a simplified cosmological model. We propose a new cosmological system of units, including a cosmological Planck’s constant that “absorbs” the well known large number 10120. With this new Planck’s constant no large numbers appear at the cosmological level. They appear at lower levels, e.g. at the quantum world. We note here that Zel’dovich formula, for the cosmological constant Λ, is equivalent to the Weinberg’s relation. The immediate conclusion is that the speed of light c must be proportional to the Hubble parameter H, and therefore decrease with time. We find that the gravitational radius of the Universe and its size are one and the same constant (Mach’s principle). The usual cosmological Ω’s parameters for mass, lambda and curvature turn out to be all constants of order one. The anthropic principle is not necessary in this theory. It is shown that a factor of 1061 converts in this theory a Planck fluctuation (a quantum black hole) into a cosmological quantum black hole: the Universe today. General relativity and quantum mechanics give the same local solution of an expanding Universe with the law a(t)≈const?t. This constant is just the speed of light today. Then the Hubble parameter is exactly H=a(t)′/a(t)=1/t.  相似文献   

16.
Tearing modes in a plane collisionless current sheet with shear bulk flow are studied. An analytic expression for the growth rate is obtained for the case \(M^2 = (1 - \varepsilon {\text{ sech}}^m \bar z)\) , whereM is the Mach number,m the shear flow index, ε a positive constant less than unity, and \(\bar z\) the (normalized) co-ordinate normal to the current sheet. The growth rates are large and the unstable wave number domain is increased as compared to the case without flow. The relevance of these results to time-dependent reconnection processes in the Earth's magnetosphere is discussed.  相似文献   

17.
The very early universe must have been extremely homogeneous, even on scales far exceeding the particle horizon. Within the framework of the standard Friedmann cosmology, homogenization can only be achieved by quantum effects which violate classical causality. This could happen when the particle horizon was smaller than the Compton wavelength of the pion. The assumption that statistical departures from equilibrium started to grow after this epoch leads to a prediction of the density fluctuations at recombination. The amplitude ν of the fluctuations should have a maximum of about 0.007 on scales of 81017M. For smaller scales, ν ∝M +1/6, and for larger scales, ν ∝M ?1/2. This suggests that superclusters condense out at a red shift of about 11, and clusters and then galaxies form shortly after by fragmentation.  相似文献   

18.
《New Astronomy》2007,12(5):422-426
I propose an alternative approach to extend the scope of the analytical understanding of structure formation in the universe. By assuming a scalar field ψ whose Lagrangian density implies a sine-Gordon equation for the unstable modes, we find the standard 1D solution for this equation over the nonlinear regime. The solutions predict the appearance of periodic nonlinear waves with soliton features in the cosmic fluid. I also introduce a procedure to transform ψ to the density matter field ρ and present some simple profiles of the resulting structures.  相似文献   

19.
The (Newton + Yukawa)-type gravitational potential V(r)=?(γ M/r)[1+Aexp?(?r/B)](γ= the gravitational constant as measured at infinity, M= the mass of the source, A, B are constants) is considered in the framework of the Sciama linear approach to Mach’s principle. The coupling constant A of the Yukawa component is found to be related to the mass density and size of the observable (causally connected) universe.  相似文献   

20.
Where spatial gradients in the amplitude of an Alfvén wave are non-zero, a nonlinear magnetic-pressure gradient acts upon the medium (commonly referred to as the ponderomotive force). We investigate the nature of such a force in inhomogeneous 2.5D MHD plasmas by analysing source terms in the nonlinear wave equations for the general case of inhomogeneous B and ρ, and consider supporting nonlinear numerical simulations. Our equations indicate that there are two distinct classes of ponderomotive effect induced by Alfvén waves in general 2.5D MHD, each with both a longitudinal and transverse manifestation. i) Geometric effects: Gradients in the pulse geometry relative to the background magnetic field cause the wave to sustain cospatial disturbances, the longitudinal and transverse daughter disturbances – where we report on the transverse disturbance for the first time. ii) ?(c A) effects: Where a pulse propagates through an inhomogeneous region (where the gradients in the Alfvén-speed profile c A are non-zero), the nonlinear magnetic-pressure gradient acts to accelerate the plasma. Transverse gradients (phase mixing regions) excite independently propagating fast magnetoacoustic waves (generalising the result of Nakariakov, Roberts, and Murawski (Solar Phys. 175, 93, 1997)) and longitudinal gradients (longitudinally dispersive regions) perturb along the field (thus creating static disturbances in β=0, and slow waves in β≠0). We additionally demonstrate that mode conversion due the nonlinear Lorentz force is a one-way process, and does not act as a mechanism to nonlinearly generate Alfvén waves due to propagating magnetoacoustic waves. We conclude that these ponderomotive effects are induced by an Alfvén wave propagating in any MHD medium, and have the potential to have significant consequences on the dynamics of energy transport and aspects of dissipation provided the system is sufficiently nonlinear and inhomogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号