首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
Zhang  Hongqi  Zhang  Mei 《Solar physics》2000,196(2):269-277
Simultaneous observations of chromospheric (H) and photospheric (Fei 5324.19 Å) magnetograms in quiet solar regions enable us to study the spatial configuration of the magnetic field in the solar atmosphere. With the typical spatial resolution of the Huairou magnetograph, the photospheric and chromospheric magnetic structures of the quiet Sun maintain a very similar pattern. Moreover, the vertical magnetic flux is almost the same from the photosphere to the chromosphere. As an intermediate step, we analyze the formation of the working lines used by the Huairou video magnetograph of the Beijing Astronomical Observatory. The Stokes V contribution function of H and Fei 5324.19 Å are calculated. It is found that our H magnetograms provide the distribution of the chromospheric magnetic field at a height some 1000–1500 km above the photosphere.  相似文献   

2.
The temporal and spatial variations of EUV emission from a small growing active region were investigated. Frequent localized short term ( few minutes) fluctuations in EUV emission were observed throughout the 7.2 hr interval when the most continuous observations were acquired. Approximately 20% of the 5 x 5 pixels had intensity variations exceeding a factor of 1.3 for the chromospheric L line, a factor of 1.5 for lines formed in the chromospheric-coronal transition region and a factor of 1.4 for the coronal Mg x line. A subflare in the region produced the largest intensity enhancements, ranging from a factor of 2.3 for the chromospheric L line to 8 for the transition region and coronal lines. The EUV fluctuations in this small active region are similar to those observed in coronal bright points, suggesting that impulsive heating is an important, perhaps dominant form of heating the upper chromospheric and lower coronal plasmas in small magnetic bipolar regions. The responsible mechanism most likely involves the rapid release of magnetic energy, possibly associated with the emergence of magnetic flux from lower levels into the chromosphere and corona.  相似文献   

3.
A series of H chromospheric magnetograms was obtained at various wavelengths near the line center with the vector video magnetograph at Huairou Solar Observing Station as a diagnostic of chromospheric magnetic structures. The two-dimensional distribution of the circular polarization light of the H line with its blended lines at various wavelength in active regions was obtained, which consists of the analyses of Stokes' profileV of this line. Due to the disturbance of the photospheric blended line Fei 4860.98 for the measurement of the chromospheric magnetic field, a reversal in the chromospheric magnetograms relative to the photospheric ones occurs in the sunspot umbrae. But in the quiet, plage regions, even penumbrae, the influence of the photospheric blended Fei 4860.98 line is not obvious. As regards the observation of the H chromospheric magnetograms, we can select the working wavelength between -0.20 and -0.24 from the line core of H to avoid the wavelengths of the photospheric blended lines in the wing of H.After the spectral analysis of chromospheric magnetograms, we conclude that the distribution of the chromospheric magnetic field is similar to the photospheric field, especially in the umbrae of the sunspots. The chromospheric magnetic field is the result of the extension of the photospheric field.  相似文献   

4.
The flux-rope-fibre model of solar magnetic fields is developed further to cover post-spot evolution of the fields, faculae, and the influence of magnetic fields on some convective motions. (i) Unipolar magnetic regions of a strongly dominant polarity are explained, as are some fields outside the network, and some tiny reversed polarity fields. (ii) The migration of magnetic regions is explained: the following regions to the poles where most of the flux just vanishes and the preceding towards the equator. (iii) The model explains the rotation of the gross pattern of background fields with a period of 27 days. It explains the puzzling features of active longitudes and of magnetic longitudes extending across the equator. (iv) The magnetic model provides a framework for the various chromospheric fine structures, the rosettes, bushes, double chains, mottles and spicules. It provides qualitative models of these features and points the way to a very complicated quantitative model of the network. (v) Several new convective patterns are described and explained in terms of magnetic stresses. The first is the moat around sunspots, which replaces the supergranule motions there. The second is the long-lived (4–7 days) supergranule cell enclosed by strong fields. The third is a small-scale () convective motion, and the fourth is aligned or long granules, both caused by small-scale magnetic fields. (vi) Photospheric line faculae and photospheric continuum faculae are different phenomena. The former, like the chromospheric faculae, are caused by Alfvén-wave heating. The latter are caused by a new small-scale convective motion. (vii) A model of the 3-min oscillation is described.  相似文献   

5.
The long-time series of daily means of cosmic-ray intensity observed by four neutron monitors at different cutoff rigidities (Calgary, Climax, Lomnický tít and Huancayo/Haleakala) were analyzed by means of the wavelet transform method in the period range 60 to 1000 days. The contributions of the time evolution of three quasi-periodic cosmic-ray signals (150 d, 1.3 yr and 1.7 yr) to the global one are obtained. While the 1.7-yr quasi-periodicity, the most remarkable one in the studied interval, strongly contributes to the cosmic ray intensity profile of solar cycle 21 (particularly in 1982), the 1.3-yr one, which is better correlated with the same periodicity of the interplanetary magnetic field strength, is present as a characteristic feature for the decreasing phases of the cycles 20 and 22. Transitions between these quasi-periodicities are seen in the wavelet power spectra plots. Obtained results support the claimed difference in the solar activity evolution during odd and even solar activity cycles.  相似文献   

6.
Helicity of solar magnetic fields plays an important role in dynamo theories of the solar cycle. The helicity has been known to vary with the main 11-year period (Hale's cycle). Recent observations have revealed significant helicity variations on a shorter time scale, with a characteristic period of approximately 2 years. We suggest an explanation for the observed variations of the magnetic helicity, based on our model of the double magnetic cycle of solar activity. The quasi-biennial variations of the helicity are the consequence of the influence of erupted magnetic fields of the main cycle on the helicity in the regions of generation of the high-frequency component of magnetic field. This model suggests that the low-frequency component is generated at the base of the convective zone due to large-scale radial shear /r of angular velocity . The high-frequency component may be generated in the subsurface region due to latitudinal shear / or due to the radial shear in this region.  相似文献   

7.
We present observations of a UV event which occurred in a polar coronal hole. They were obtained by SUMER on SOHO in several chromospheric and transition region spectral lines. Its birth site was about 50 arc sec inside the limb and in a network lane showing a net outflow before its initiation. The event had an extension of about 5 arc sec along the slit, a duration of about 3 min and was characterized by a large increase of intensity together with a significant line broadening with, however, downflows of about 50 km s–1 being dominant. Proper motions with a velocity of about 10 km s–1 were also observed. The event appeared at middle transition (Ovi) temperatures and it simultaneously showed up in chromospheric (Oi, Ly ) and low transition region (Cii) temperatures. We discuss this event in view of different scenarios to account for it. Our event could be a part of the large family of quiet-Sun explosive events observed by Ryutova and Tarbell (2000) taking place in polar coronal holes that are triggered by magnetic reconnection in the low solar atmosphere.  相似文献   

8.
Ballester  J. L.  Kleczek  J. 《Solar physics》1983,89(2):261-273
Two sequences of OSO-4 spectroheliograms in Mg x and Si xii obtained during October–November 1967 and covering the intervals of 83 and 22 hr, respectively, have been analyzed to reveal quasi-periodic oscillations of EUV flux from solar sources with a periodicity of 5–14 hr. The oscillation periods of the emission flux from local sources over sunspots and magnetic field enhancements in plages without spots have been investigated in correlation with characteristics of the respective AR and plages. The greatest periods (> 8 hr) are shown to be peculiar of small sunspots or sunspot groups at the initial or final stage of their development, whereas the smallest periods ( 5–6 hr) are observed in the case of large well-developed groups at the maximum stage of development. In quiet regions on the Sun and plages without spots, the oscillation periods are 6–8 hr. The surface areas in which the oscillations are synchronous and coincide in phase have typical dimensions of 1 in quiet and 1 to 5 in active regions. These areas form a spatial structure similar to the chromospheric network and supergranules. The characteristic lifetime of the structure elements is 1.5–2 days.  相似文献   

9.
Time-sequenced H filtergrams and narrow-band blue filtergrams (0 = 4308 Å, = 10 Å) of umbral dots in a decaying sunspot were studied. The results are: (a) Photospheric umbral dots have lifetimes of about 40 min. (b) Two types of proper motion were found for photospheric umbral dots. Umbral dots born in the umbra or in the light bridge show virtually no proper motion. On the other hand, umbral dots of penumbral origin move inward to the umbra with speeds of about 0.4 km s –1. (c) Chromospheric umbral dots, which have dimensions of 0.6 × 1.2 in the mean, were more numerously found than photospheric umbral dots. (d) Photospheric umbral dots were observed to be associated with chromospheric umbral dots. Thus umbral dots are not phenomena confined to photospheric levels but also extend to chromospheric levels. (e) Some of the chromospheric umbral dots are unrelated to the photospheric umbral dots. They may be excited by the infalling matter from the umbral corona.Contribution from the Kwasan and Hida Observatories, University of Kyoto, No. 266.  相似文献   

10.
In this paper we introduce a new parameter, the shear angle of vector magnetic fields, , to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the angular shear, , defined by Hagyardet al. (1984). The angular shear, , can be considered as the projection of the shear angle, , on the photosphere. For the active region studied, the shear angle, , seems to have a better and neater correspondence with flare activity than does . The shear angle, , gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.  相似文献   

11.
We have mapped two solar active regions using the VLA at three closely spaced frequencies (4496, 4716, and 4996 MHz) in an attempt to determine the origin of the steep spectra (index –5 to –8) sometimes observed with large single telescopes. One of the regions observed indeed shows an anomalously large slope ( –6) compared to the usual ( –2 to –2.5). The other region shows a similar slope ( –5) but with a larger range of statistical error. Two possible explanations for such steep edges in solar spectra are (1) transmission effects of neutral current sheets, and (2) the appearance of cyclotron lines. The internal evidence of the microwave maps and simultaneous optical observations favor an explanation in terms of cyclotron lines.On leave from Indian Institute of Astrophysics, Bangalore, India.  相似文献   

12.
13.
A log-periodic array, 3 km long in the E-W direction is in operation at the Clark Lake Radio Observatory. The solar brightness distribution is swept once per second in the 65-20 MHz frequency range. The analysis of the interferometer records allows the determination of one dimensional solar burst positions, to an accuracy of 0.1 R at 60 MHz and 0.3 R at 30 MHz, approximately.Six long duration noise storms have been observed over an eight month period, extending from January to September, 1971. The storms are described and their relation to chromospheric active regions and flares is discussed. Decametric storms are found to be related to complexes of interacting active regions. The interaction is studied in terms of the number of simultaneous flares observed to occur in the various active regions. On the average, twice as many simultaneous flares are observed than would be expected if flares occurred at random. An analysis of coronal magnetic field maps computed from longitudinal photospheric fields shows magnetic arcades and some divergent field lines at the site of storm regions. Decimeter and meter wavelength sources are found to be associated with all decameter storms. At decimeter wavelengths double or multiple sources are often seen above individual active regions forming part of the chromospheric complex.  相似文献   

14.
Tarbell  T.D.  Ryutova  M.  Shine  R. 《Solar physics》2000,193(1-2):195-218
We study the response of the chromosphere and transition region to dynamic changes in the photospheric network magnetic fields. We present results from simultaneous measurements taken by TRACE in chromospheric and transition region (Civ) images, high-resolution magnetograms taken by MDI, and spectra of chromospheric (Cii) and transition region lines (Ovi) obtained with the SUMER instrument on SOHO. Enhanced emission in the Civ line is generally co-spatial with the magnetic pattern in the photosphere. We propose a mechanism of electro-mechanical coupling between the photosphere and upper layers of atmosphere based on hydrodynamic cumulation of energy produced by reconnecting flux tubes in the photosphere/chromosphere region (Tarbell et al., 1999). We believe that a basic process causing energetic events is the cascade of shock waves produced by colliding and reconnecting flux tubes. The continuous supply of flux tubes in the magnetic carpet ensures the ubiquitous nature of this process and its imprint on the upper atmosphere. The appearance of bright transients often, but not always, correlates with canceling mixed polarity magnetic elements in the photosphere. In other cases, transients occur in regions of unipolar flux tubes, suggesting reconnection of oblique components. Transients are also seen in regions with no fields detected with the MDI sensitivity; these may be reconnections of tiny features with diameters less than 100 km. Blinkers and other bright transients are often accompanied by two directional plasma jets. These may be generated by cylindrical self-focusing of shock fronts or by collision of shocks produced by neighboring reconnection processes. The observations suggest that stronger emissions correspond to lower velocity jets, and vice versa; this property is a natural consequence of the proposed mechanism. Plasma flows are always seen whenever the slit crosses strong magnetic flux tubes or vertices of converging flows in the supergranular network. The overall energy distribution between heating and plasma flows is an intrinsic feature of our mechanism.  相似文献   

15.
We present two-dimensional solar maps at 5.2 cm computed from one-dimensinal observations with the Siberian Solar Radio Telescope (SSRT), using Earth rotation aperture synthesis techniques. The resolution attained with the E-W branch of the instrument is 15 by 45 for a solar declination of about 23°. Maps during the period of June 8 to 13, 1988 clearly show the quiet-Sun background, sunspot and plage associated emission as well as compact sources above the neutral line in some active regions. We found that the latter disappear as the gradient of the longitudinal magnetic field decreases. We also detected emission associated with active regions behind the limb, apparently from unresolved loops, extending up to 40. The prospects of the SSRT, as a dedicated solar instrument, are discussed.  相似文献   

16.
M. R. Kundu 《Solar physics》1970,13(2):348-356
Some properties of solar active regions at 9, 3.5 and 1.2 mm wavelengths are discussed. The regions have excess brightness temperatures of up to 1000, 700 and 150 K at 9, 3.5 and 1.2 mm wavelengths. The background radiation at 3.5 mm is often seen to be absorbed in regions closely coincident with H dark filaments on the disk. Interpretation of this absorption as due to the large optical thickness of the overlying filamentary material leads to an estimate of electron density in the filaments. The 9 and 3.5 mm- regions show almost one-to-one correspondence with the Ca-plage regions as well as with the regions on magnetograms. The latter relationship suggests the possibility of measuring chromospheric magnetic fields from the measurement of polarization at millimeter wavelengths.  相似文献   

17.
Bewsher  D.  Parnell  C.E.  Pike  C.D.  Harrison  R.A. 《Solar physics》2003,215(2):217-237
The relative Doppler and non-thermal velocities of quiet-Sun and active-region blinkers identified in Ov with CDS are calculated. Relative velocities for the corresponding chromospheric plasma below are also determined using the Hei line. Ov blinkers and the chromosphere directly below, have a preference to be more red-shifted than the normal transition region and chromospheric plasma. The ranges of these enhanced velocities, however, are no larger than the typical spread of Doppler velocities in these regions. The anticipated ranges of Doppler velocities of blinkers are 10–15 km s–1 in the quiet Sun (10–20 km s–1 in active regions) for Hei and 25–30 km s–1 in the quiet Sun (20–40 km s–1 in active regions) for Ov. Blinkers and the chromosphere below also have preferentially larger non-thermal velocities than the typical background chromosphere and transition region. Again the increase in magnitude of these non-thermal velocities is no greater than the typical ranges of non-thermal velocities. The ranges of non-thermal velocities of blinkers in both the quiet Sun and active regions are estimated to be 15–25 km s–1 in Hei and 30–45 km s–1 in Ov. There are more blinkers with larger Doppler and non-thermal velocities than would be expected in the whole of the chromosphere and transition region. The recently suggested mechanisms for blinkers are revisited and discussed further in light of the new results.  相似文献   

18.
19.
In this letter, we bring attention to prominences which show different morphology in H and Heii 304 Å, as observed simultaneously by BBSO and EIT on board SOHO. Those two lines have been thought to represent similar chromospheric structures although they are formed at significantly different temperatures. We give two examples representing two kinds of anomaly: (1) prominences showing strong H emissions in the lower part and strong Heii emissions in the upper part, and (2) erupting prominences showing extensive Heii emission, but nothing in H. Our results indicate that a part or the whole of a prominence may be too hot to emit H radiation, possibly due to heating or thermal instability. Please note that these are not just two isolated cases, many other prominences show the similar differences in H and Heii 304 Å.  相似文献   

20.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号