首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of local seismicity (110 events) and the source parameters of 26 local events (1.0?≤?Mw?≤?2.5) that occurred during May 2008 to April 2009 in Bilaspur region of Himachal Lesser Himalaya were determined. The digital records available from one station have been used to compute the source parameters and f max based on the Brune source model (1970) and a high-frequency diminution factor (Boore 1983) above f max. The epicentral distribution of events within 30 km of local network is broadly divided into three clusters of seismic activity: (1) a cluster located to the south of the Jamthal (JAMT) station and falls to the north of the Main Boundary Thrust (MBT) which seems to reflect the contemporary local seismicity of the segment of the MBT, (2) an elongated zone of local seismicity NE–SW trending, delineated NE of JAMT station that falls in the Lesser Himalaya between the MBT and the Main Central Thrust, and (3) NE–SW trending zone of local seismic activity located at about 10 km east of NHRI station and about 15 km northeast of NERI station and extending over a distance of about 20 km. Majority of events occur at shallow depths up to 20 km, and the maximum number of events occurs in the focal depth range between 10 and 15 km. The entire seismic activity is confined to the crust between 5 and 45 km. The average values of these source parameters range from 3.29?×?1017 to 3.73?×?1019?dyne-cm for seismic moment, 0.1 to 9.7 bars for stress drops, and 111.78 to 558.92 m for source radii. The average value of f max for these events varies from 7 to 18 Hz and seems to be source dependent.  相似文献   

2.
The Lesser Himalaya in central Nepal consists of Precambrian to early Paleozoic, low- to medium-grade metamorphic rocks of the Nawakot Complex, unconformably overlain by the Upper Carboniferous to Lower Miocene Tansen Group. It is divided tectonically into a Parautochthon, two thrust sheets (Thrust sheets I and II), and a wide shear zone (Main Central Thrust zone) from south to north by the Bari Gad–Kali Gandaki Fault, the Phalebas Thrust and the Lower Main Central Thrust, respectively. The Lesser Himalaya is overthrust by the Higher Himalaya along the Upper Main Central Thrust (UMCT). The Lesser Himalaya forms a foreland-propagating duplex structure, each tectonic unit being a horse bounded by imbricate faults. The UMCT and the Main Boundary Thrust are the roof and floor thrusts, respectively. The duplex is cut-off by an out-of-sequence fault. At least five phases of deformation (D1–D5) are recognized in the Lesser Himalaya, two of which (D1 and D2) belong to the pre-Himalayan (pre-Tertiary) orogeny. Petrographic, microprobe and illite crystallinity data show polymetamorphic evolution of the Lesser and Higher Himalayas in central Nepal. The Lesser Himalaya suffered a pre-Himalayan (probably early Paleozoic) anchizonal prograde metamorphism (M0) and a Neohimalayan (syn- to post-UMCT) diagenetic to garnet grade prograde inverted metamorphism (M2). The Higher Himalaya suffered an Eohimalayan (pre or early-UMCT) kyanite-grade prograde metamorphism (M1) which was, in turn, overprinted by Neohimalayan (syn-UMCT) retrograde metamorphism (M2). The isograd inversion from garnet zone in the Lesser Himalaya to kyanite zone in the Higher Himalaya is only apparent due to post-metamorphic thrusting along the UMCT. Both the Lesser and Higher Himalayas have undergone late-stage retrogression (M3) during exhumation.  相似文献   

3.
Despite similar geological and tectonic setting along the Himalayan orogen, distinct thermochronological/exhumational and seismicity variability exists between the Kumaun and the Garhwal regions of the NW‐ Himalaya. The processes responsible for such variability are still debated. To understand this, published thermochronological ages from several traverses across the Higher Himalayan Crystalline (HHC) and Lesser Himalayan Crystalline (LHC) have been correlated with the seismicity pattern in both Garhwal and Kumaun segments. The seismicity pattern coincides with the zone of rapid uplift and exhumation. The profiles of seismicity across the Kumaun and the Garhwal regions agree with the existence of the Main Himalayan Thrust (MHT) underlying the regions and reflect its geometry and architecture. Slip along the MHT is responsible for occurrence of seismicity on decade time‐scale and exhumation pattern on Myr time‐scale of the Himalaya.  相似文献   

4.
The series of four different, steeply inclined thrusts which sharply sever the youthful autochthonous Cenozoic sedimentary zone, including the Siwalik, from the mature old Lesser Himalayan subprovince is collectively known as the Main Boundary Thrust (MBT). In the proximity of this trust in northwestern and eastern sectors, the parautochtonous Lesser Himalayan sedimentary formations are pushed up and their narrow frontal parts split into imbricate sheets with attendant repetition and inversion of lithostratigraphic units. The superficially steeper thrust plane seems to flatten out at depth. The MBT is tectonically and seismically very active at the present time.The Main Central Thrust (MCT), inclined 30° to 45° northwards, constitutes the real boundary between the Lesser and Great Himalaya. Marking an abrubt change in the style and orientation of structures and in the grade of metamorphism from lower amphibolitefacies of the Lesser Himalayan to higher metamorphic facies of the Great Himalayan, the redefined Main Central Thrust lies at a higher level as that originally recognized by A. Heim and A. Gansser. They had recognized this thrust as the contact of the mesozonal metamorphics against the underlying sedimentaries or epimetamorphics. It has now been redesignated as the Munsiari Thrust in Kumaun. It extends northwest in Himachal as the Jutogh Thrust and farther in Kashmir as the Panjal Thrust. In the eastern Himalaya the equivalents of the Munsiari Thrust are known as the Paro Thrust and the Bomdila Thrust. The upper thrust surface in Nepal is recognized as the Main Central Thrust by French and Japanese workers. The easterly extension of the MCT is known as the Khumbu Thrust in eastern Nepal, the Darjeeling Thrust in the Darjeeling-Sikkim region, the Thimpu Thrust in Bhutan and the Sela Thrust in western Arunachal. Significantly, hot springs occur in close proximity to this thrust in Kumaun, Nepal and Bhutan. There are reasons to believe that movement is taking place along the MCT, although seismically it is less active than the MBT.  相似文献   

5.
Himalayan seismicity is related to continuing northward convergence of Indian plate against Eurasian plate. Earthquakes in this region are mainly caused due to release of elastic strain energy. The Himalayan region can be attributed to highly complex geodynamic process and therefore is best suited for multifractal seismicity analysis. Fractal analysis of earthquakes (mb ?? 3.5) occurred during 1973?C2008 led to the detection of a clustering pattern in the narrow time span. This clustering was identified in three windows of 50 events each having low spatial correlation fractal dimension (D C ) value 0.836, 0.946 and 0.285 which were mainly during the span of 1998 to 2005. This clustering may be considered as an indication of a highly stressed region. The Guttenberg Richter b-value was determined for the same subsets considered for the D C estimation. Based on the fractal clustering pattern of events, we conclude that the clustered events are indicative of a highly stressed region of weak zone from where the rupture propagation eventually may nucleate as a strong earthquake. Multifractal analysis gave some understanding of the heterogeneity of fractal structure of the seismicity and existence of complex interconnected structure of the Himalayan thrust systems. The present analysis indicates an impending strong earthquake, which might help in better hazard mitigation for the Kumaun Himalaya and its surrounding region.  相似文献   

6.
North-eastern Himalaya is said to be one of the world most complex geological set-up with different kinds of seismotectonic systems. Region has experienced two of the world’s strongest earthquakes, such as Shillong earthquake of 1897 known as Assam earthquake and subsequent 1950 earthquake in Arunachal Pradesh, both of with magnitude of 8.7, and also several other strong earthquakes. Various techniques have been applied to understand the past strong earthquake mechanism as well as hazard estimation carried out for future earthquake. Fractal correlation dimension (D c) is being used in this study with the seismicity for the period 1961 to recent for understanding the pattern of seismic hazard. The entire area has been divided into four major tectonic blocks, and each block event was divided into consecutive fifty events window for seeing spatiotemporal patterns. After comparing the patterns, we have identified that Block of Eastern Himalaya near Main Central Thrust, Main Boundary Thrust, north of Kopili lineament and Block of Shillong plateau near Dauki fault are having relatively intense clustering of events in recent times, which may be identified as the zones of most potential to have a strong event.  相似文献   

7.
8.
Dun structures are common in the Sub-Himalayan zone of the Himalaya bounded by the Main Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT). They are broad synclinal longitudinal valleys formed as a consequence of the exhumation of the range front of the Himalaya. In the Garhwal Sub-Himalaya, these structures have grown since 0.5 Ma, with the peak activity postdating ∼100 ka. A series of out-of-sequence deformation structures have been identified within the MBT-HFT-bounded Dun structures. They are identified on the basis of geomorphic, post-100 ka stratigraphic, and structural expressions, with activity as young as the early Holocene. To the south of the range front of the Himalaya, uplift has been observed in the Piedmont Zone, with peculiar active tectonic geomorphic expressions. Piedmont sediments of 15–5 ka, determined by Optically Simulated Luminescence (OSL), have been affected by the above uplift. The complete tectonic scenario has been analyzed and an attempt has been made to delineate the sequential evolution of these structures during the post-100 ka period (Late Quaternary–Holocene) in the Himalayan range front.  相似文献   

9.
Understanding of seismicity and seismotectonics of Delhi and adjoining areas is essential as these areas lie in the seismic zone IV and are geologically confined to the Delhi Fold Belt (DFB), juxtaposed to the Himalayan Frontal Thrust Fold Belt. Owing to the set-up, seismicity in this area is ascribed to the Himalayan Thrust System and activation of DFB Fault Systems. Considerably improved instrumental seismic monitoring in this area and data analysis had resolved three regions of pronounced seismicity that lie close to Sonepat, Rohtak and western part of the NCT Delhi, attributed to activation of various portions of the fault systems of the DFB. Based on seismic telemetry network data, the seismicity pattern analysis revealed that the Mahendragarh Dehradun Sub-Surface Fault (MDSSF) and Delhi Sargodha Ridge (DSR) are the two major zones of structural importance for the nucleation of seismicity in this region. These revelations were corroborated with the fault plane solution of the earthquakes. The dominant mechanism in nucleation of seismicity in DFB is the thrust with minor strike slip. The seismicity and seismotectonics of Delhi and adjoining areas endemic to activation of DFB is reviewed and presented in this paper.  相似文献   

10.
In Kameng Valley of Arunachal Pradesh, the crystalline rocks of Se La Group of Higher Himalaya are thrust over the Lesser Himalayan rocks of Dirang Formation, Bomdila Group along the Main Central Thrust and exhibit well preserved structures on macro- to microscopic scales. Detailed analysis of structures reveals that the rocks of the area have suffered four phases of deformation D1, D2, D3 and D4. These structures have been grouped into (i) early structures (ii) structures related to progressive ductile thrusting and (iii) late structures. The early structures which developed before thrusting formed during D1 and D2 phases of deformation, synchronous to F1 and F2 phases of folding respectively. The structures related to progressive ductile shearing developed during D3 phase of deformation, when the emplacement of the crystalline rocks took place over the rocks of Dirang Formation along the Main Central Thrust. Different asymmetric structures/kinematic indicators developed during this ductile/brittle-ductile regime suggest top-to-SSW sense of movement of the crystalline rocks of the area. D4 is attributed to brittle deformation. Based on satellite data two new thrusts, i.e. Tawang and Se La thrusts have been identified parallel to Main Central Thrust, which are suggestive of imbricate thrusting. Strain analysis from the quartz grains of the gneissic rocks reveals constriction type of strain ellipsoid where k value is higher near the MCT, gradually decreases towards the north. Further, the dynamic analysis carried out on the mesoscopic ductile and brittle-ductile shear zones suggest a NNE-SSW horizontal compression corresponding to the direction of northward movement of Indian Plate.  相似文献   

11.
MAIN CENTRAL THRUST ZONE IN THE KATHMANDU AREA, CENTRAL NEPAL, AND ITS TECTONIC SIGNIFICANCE1 AritaK ,LallmeyerRD ,TakasuA .TectonothermalevolutionoftheLesserHimalaya ,Nepal:constraintsfrom 4 0 Ar/3 9AragesfromtheKathmandunappe[J].TheIslandArc ,1997,6 :372~ 384. 2 RaiSM ,GuillotS ,LeFortP ,etal.Pressure temperatureevolutionintheKathmanduandGosainkundregions ,CentralNepal[J].JourAsianEarthSci ,1998,16 :2 83~ 2 98. 3 SchellingD ,KArita .…  相似文献   

12.
The study deals spatial mapping of earthquake hazard parameters like annual and 100-years mode along with their 90% probability of not being exceeded (NBE) in the Hindukush–Pamir Himalaya and adjoining regions. For this purpose, we applied a straightforward and most robust method known as Gumbel’s third asymptotic distribution of extreme values (GIII). A homogeneous and complete earthquake catalogue during the period 1900–2010 with magnitude MW  4.0 is utilized to estimate these earthquake hazard parameters. An equal grid point mesh, of 1° longitude X 1° latitude, is chosen to produce detailed earthquake hazard maps. This performance allows analysis of the localized seismicity parameters and representation of their regional variations as contour maps. The estimated result of annual mode with 90% probability of NBE is expected to exceed the values of MW 6.0 in the Sulaiman–Kirthar ranges of Pakistan and northwestern part of the Nepal and surroundings in the examined region. The 100-years mode with 90% probability of NBE is expected to exceed the value of MW 8.0 in the Hindukush–Pamir Himalaya with Caucasus mountain belt, the Sulaiman–Kirthar ranges of Pakistan, northwestern part of the Nepal and surroundings, the Kangra–Himanchal Pradesh and Kashmir of India. The estimated high values of earthquake hazard parameters are mostly correlated with the main tectonic regimes of the examined region. The spatial variations of earthquake hazard parameters reveal that the examined region exhibits more complexity and has high crustal heterogeneity. The spatial maps provide a brief atlas of the earthquake hazard in the region.  相似文献   

13.
Ali. O. Oncel  Tom Wilson   《Tectonophysics》2006,418(3-4):205-218
Seismotectonic parameters including the Gutenberg-Richter b-value and multifractal dimensions D2 and D15 of seismicity patterns (both spatial and temporal) were compared to GPS-derived maximum shear and dilatation strains measured in the Marmara Sea region of western Turkey along the Northern Anatolian Fault Zone (NAFZ). Comparisons of seismotectonic parameters and GPS-derived maximum shear and dilatation strain along the NAFZ in the vicinity of the 1999 M7.4 Izmit earthquake reveal a positive correlation (r = 0.5, p = 0.05) between average dilatation and the Gutenberg-Richter b-value. Significant negative correlation (r = − 0.56, p = 0.03 and r = − 0.56, p = 0.02) was also observed between the spatial fractal dimension D2 and GPS-derived maximum geodetic and shear strain. This relationship suggests that, as maximum geodetic and shear strains increase, seismicity becomes increasingly clustered.Anomalous interrelationships are observed in the Marmara Sea region prior to the Izmit event along a bend in the NAFZ near the eastern end of the Marmara Sea known as the Northern Boundary Fault (NBF). An asperity is located near the northwest end of the NBF. Along the 50-km length of the NBF, GPS strains become slightly compressive. The correlation between b-value and GPS-derived dilatation suggests that regions in compression have increased probability of larger magnitude rupture. The NBF appears to serve as an impediment to the transfer of strain from east to west along the NAFZ. Recurrence times for large earthquakes along the NBF are larger than in surrounding areas. Temporal clustering of seismicity in the vicinity of the NBF may represent foreshocks of an impending rupture.  相似文献   

14.
In this study, we accurately relocate 360 earthquakes in the Sikkim Himalaya through the application of the double-difference algorithm to 4?years of data accrued from a eleven-station broadband seismic network. The analysis brings out two major clusters of seismicity??one located in between the main central thrust (MCT) and the main boundary thrust (MBT) and the other in the northwest region of Sikkim that is site to the devastating Mw6.9 earthquake of September 18, 2011. Keeping in view the limitations imposed by the Nyquist frequency of our data (10?Hz), we select 9 moderate size earthquakes (5.3????Ml????4) for the estimation of source parameters. Analysis of shear wave spectra of these earthquakes yields seismic moments in the range of 7.95?×?1021 dyne-cm to 6.31?×?1023 dyne-cm and corner frequencies in the range of 1.8?C6.25?Hz. Smaller seismic moments obtained in Sikkim when compared with the rest of the Himalaya vindicates the lower seismicity levels in the region. Interestingly, it is observed that most of the events having larger seismic moment occur between MBT and MCT lending credence to our observation that this is the most active portion of Sikkim Himalaya. The estimates of stress drop and source radius range from 48 to 389?bar and 0.225 to 0.781?km, respectively. Stress drops do not seem to correlate with the scalar seismic moments affirming the view that stress drop is independent over a wide moment range. While the continental collision scenario can be invoked as a reason to explain a predominance of low stress drops in the Himalayan region, those with relatively higher stress drops in Sikkim Himalaya could be attributed to their affinity with strike-slip source mechanisms. Least square regression of the scalar seismic moment (M 0) and local magnitude (Ml) results in a relation LogM 0?=?(1.56?±?0.05)Ml?+?(8.55?±?0.12) while that between moment magnitude (M w ) and local magnitude as M w ?=?(0.92?±?0.04)Ml?+?(0.14?±?0.06). These relations could serve as useful inputs for the assessment of earthquake hazard in this seismically active region of Himalaya.  相似文献   

15.
A landslide susceptibility zonation (LSZ) map helps to understand the spatial distribution of slope failure probability in an area and hence it is useful for effective landslide hazard mitigation measures. Such maps can be generated using qualitative or quantitative approaches. The present study is an attempt to utilise a multivariate statistical method called binary logistic regression (BLR) analysis for LSZ mapping in part of the Garhwal Lesser Himalaya, India, lying close to the Main Boundary Thrust (MBT). This method gives the freedom to use categorical and continuous predictor variables together in a regression analysis. Geographic Information System has been used for preparing the database on causal factors of slope instability and landslide locations as well as for carrying out the spatial modelling of landslide susceptibility. A forward stepwise logistic regression analysis using maximum likelihood estimation method has been used in the regression. The constant and the coefficients of the predictor variables retained by the regression model have been used to calculate the probability of slope failure for the entire study area. The predictive logistic regression model has been validated by receiver operating characteristic curve analysis, which has given 91.7% accuracy for the developed BLR model.  相似文献   

16.
To investigate subsurface structure and seismogenic layers, 3D velocity inversion was carried out in the source zone of 1905 Kangra earthquake (M8.0) in the northwestern Himalaya. P-wave and S-wave phase data of 159 earthquakes recorded by a network of 21 stations were used for this purpose. Inverted velocity tomograms up to a depth range of 18 km show significant variations of 14% in Vp and Vs and 6% in the Vp/Vs across the major tectonic zones in the region. Synthesis of seismicity pattern, velocity structure, distinctive focal mechanisms coupled with nature of stress distribution allows mapping of three different source regions that control regional seismotectonics. Accumulating strains are partly consumed by sliding of Chamba Nappe to the southwest through reverse-fault movements along Chamba/Panjal/Main Boundary Thrusts. This coupled with normal-fault type displacements along Chenab Normal Fault in the north account for low magnitude widespread seismicity in upper 8–10 km of the crust. At intermediate depths from 8 to 15 km, adjusting to residual compressive stresses, the detachment or lower end of the MBT slips to produce thrust dominated seismicity. Nucleation of secondary stresses in local NE–SW oriented structure interacts in complex manner with regional stresses to generate normal type earthquakes below the plane of detachment and therefore three seismic regimes at different depths produce intense seismicity in a block of 30 × 30 km2 centered NE to the epicenter of Kangra earthquake.  相似文献   

17.
Tectonics and Topography of the Tibetan Plateau in Early Miocene   总被引:1,自引:0,他引:1  
Early Miocene stratigraphy, major structural systems, magmatic emplacement, volcanic eruption, vegetation change and paleo-elevation were analyzed for the Tibetan Plateau after regional geological mapping at a scale of 1:250,000 and related researches, revealing much more information for tectonic evolution and topographic change of the high plateau caused by Indian-Asian continental collision. Lacustrine deposits of dolostone, dolomite limestone, limestone, marl, sandstone and conglomerate of weak deformation formed extensively in the central Tibetan Plateau, indicating that vast lake complexes as large as 100,000–120,000 km2 existed in the central plateau during Early Miocene. Sporopollen assemblages contained in the lacustrine strata indicate the disappearance of most tropical-subtropical broad-leaved trees since Early Miocene and the flourishing of dark needleleaved trees during Early Miocene. Such vegetation changes adjusted for latitude and global climate variations demonstrate that the central Tibetan Plateau rose to ca. 4,000–4,500 m and the northeastern plateau uplifted to ca. 3,500–4,000 m before the Early Miocene. Intensive thrust and crustal thickening occurred in the areas surrounding central Tibetan Plateau in Early Miocene, formed Gangdise Thrust System(GTS) in the southern Lhasa block, Zedong-Renbu Thrust(ZRT) in the northern Himalaya block, Main Central Thrust(MCT) and Main Boundary Thrust(MBT) in the southern Himalaya block, and regional thrust systems in the Qaidam, Qilian, West Kunlun and Songpan-Ganzi blocks. Foreland basins formed in Early Miocene along major thrust systems, e.g. the Siwalik basin along MCT, Yalung-Zangbu Basin along GTS and ZRT, southwestern Tarim depression along West Kunlun Thrust, and large foreland basins along major thrust systems in the northeastern margin of the plateau. Intensive volcanic eruptions formed in the Qiangtang, Hoh-Xil and Kunlun blocks, porphyry granites and volcanic eruptions formed in the Nainqentanglha and Gangdise Mts., and leucogranites and granites formed in the Himalaya and Longmenshan Mts. in Early Miocene. The K2O weight percentages of Early Miocene magmatic rocks in the Gangdise and Himlayan Mts. are found to increase with distance from the MBT, indicating the genetic relationship between regional magmatism and subduction of Indian continental plate in Early Miocene.  相似文献   

18.
The ongoing continent?Ccontinent collision between Indian and Eurasian plates houses a seismic gap in the geologically complex and tectonically active central Himalaya. The seismic gap is characterized by unevenly distributed seismicity. The highly complex geology with equally intricate structural elements of Himalaya offers an almost insurmountable challenge to estimating seismogenic hazard using conventional methods of Physics. Here, we apply integrated unconventional hazard mapping approach of the fractal analysis for the past earthquakes and the box counting fractal dimension of structural elements in order to understand the seismogenesis of the region properly. The study area extends from latitude 28°N?C33°N and longitude 76°E?C81°E has been divided into twenty-five blocks, and the capacity fractal dimension (D 0) of each block has been calculated using the fractal box counting technique. The study of entire blocks reveal that four blocks are having very low value of D 0 (0.536, 0.550, 0.619 and 0.678). Among these four blocks two are characterized by intense clustering of earthquakes indicated by low value of correlation fractal dimension (D c ) (0.245, 0.836 and 0.946). Further, these two blocks are categorized as highly stressed zones and the remaining two are characterized by intense clustering of structural elements in the study area. Based on the above observations, integrated analysis of the D c of earthquakes and D 0 of structural elements has led to the identification of diagnostic seismic hazard pattern for the four blocks.  相似文献   

19.
Nepal can be divided into the following five east–west trending major tectonic zones. (i) The Terai Tectonic Zone which consists of over one km of Recent alluvium concealing the Churia Group (Siwalik equivalents) and underlying rocks of northern Peninsular India. Recently active southward-propagating thrusts and folds beneath the Terai have affected both the underlying Churia and the younger sediments. (ii) The Churia Zone, which consists of Neogene to Quaternary foreland basin deposits and forms the Himalayan mountain front. The Churia Zone represents the most tectonically active part of the Himalaya. Recent sedimentologic, geochronologic and paleomagnetic studies have yielded a much better understanding of the provenance, paleoenvironment of deposition and the ages of these sediments. The Churia Group was deposited between ∼14 Ma and ∼1 Ma. Sedimentary rocks of the Churia Group form an archive of the final drama of Himalayan uplift. Involvement of the underlying northern Peninsular Indian rocks in the active tectonics of the Churia Zone has also been recognised. Unmetamorphosed Phanerozoic rocks of Peninsular India underlying the Churia Zone that are involved in the Himalayan orogeny may represent a transitional environment between the Peninsula and the Tethyan margin of the continent. (iii) The Lesser Himalayan Zone, in which mainly Precambrian rocks are involved, consists of sedimentary rocks that were deposited on the Indian continental margin and represent the southernmost facies of the Tethyan sea. Panafrican diastrophism interrupted the sedimentation in the Lesser Himalayan Zone during terminal Precambrian time causing a widespread unconformity. That unconformity separates over 12 km of unfossiliferous sedimentary rocks in the Lesser Himalaya from overlying fossiliferous rocks which are >3 km thick and range in age from Permo-Carboniferous to Lower to Middle Eocene. The deposition of the Upper Oligocene–Lower Miocene fluvial Dumri Formation records the emergence of the Himalayan mountains from under the sea. The Dumri represents the earliest foreland basin deposit of the Himalayan orogen in Nepal. Lesser Himalayan rocks are less metamorphosed than the rocks of the overlying Bhimphedis nappes and the crystalline rocks of the Higher Himalayan Zone. A broad anticline in the north and a corresponding syncline in the south along the Mahabharat range, as well as a number of thrusts and faults are the major structures of the Lesser Himalayan Zone which is thrust over the Churia Group along the Main Boundary Thrust (MBT). (iv) The crystalline high-grade metamorphic rocks of the Higher Himalayan Zone form the backbone of the Himalaya and give rise to its formidable high ranges. The Main Central Thrust (MCT) marks the base of this zone. Understanding the origin, timing of movement and associated metamorphism along the MCT holds the key to many questions about the evolution of the Himalaya. For example: the question of whether there is only one or whether there are two MCTs has been a subject of prolonged discussion without any conclusion having been reached. The well-known inverted metamorphism of the Himalaya and the late orogenic magmatism are generally attributed to movement along the MCT that brought a hot slab of High Himalayan Zone rocks over the cold Lesser Himalayan sequence. Harrison and his co-workers, as described in a paper in this volume, have lately proposed a detailed model of how this process operated. The rocks of the Higher Himalayan Zone are generally considered to be Middle Cambrian to Late Proterozoic in age. (v) The Tibetan Tethys Zone is represented by Cambrian to Cretaceous-Eocene fossiliferous sedimentary rocks overlying the crystalline rocks of the Higher Himalaya along the Southern Tibetan Detachment Fault System (STDFS) which is a north dipping normal fault system. The fault has dragged down to the north a huge pile of the Tethyan sedimentary rocks forming some of the largest folds on the Earth. Those sediments are generally considered to have been deposited in a more distal part of the Tethys than were the Lesser Himalayan sediments.The present tectonic architecture of the Himalaya is dominated by three master thrusts: the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The age of initiation of these thrusts becomes younger from north to south, with the MCT as the oldest and the MFT as the youngest. All these thrusts are considered to come together at depth in a flat-lying decollement called the Main Himalayan Thrust (MHT). The Mahabharat Thrust (MT), an intermediate thrust between the MCT and the MBT is interpreted as having brought the Bhimphedi Group out over the Lesser Himalayan rocks giving rise to Lesser Himalayan nappes containing crystalline rocks. The position of roots of these nappes is still debated. The Southern Tibetan Detachment Fault System (STDFS) has played an important role in unroofing the higher Himalayan crystalline rocks.  相似文献   

20.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号