首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary In this article, we present a scale analysis of planetary waves, extended long waves, and long waves. (We mean the extended long waves to be the disturbances whose east-west length is of order 106 m and north-south extension 107 m). We find for the extended long waves the two terms, the interaction between kinetic and available potential energy of the disturbances, and the interaction between the zonal mean available potential energy, and the eddy available potential energy, are of two orders of magnitude larger than the kinetic energy interaction between the disturbances and the associated zonal mean flow. This theoretical result concerning the relative importance of the various interaction terms may be of use in explaining the observational findings thus far available.It is also shown theoretically that the kinetic energy interaction between the planetary waves, the horizontal size of which is 107 m, and the long waves, whose horizontal size is 106 m, is of the same order as the interaction of kinetic energy between the zonal mean motion and the disturbances. This agrees fairly well with the observational estimates thus far obtained.  相似文献   

2.
Analyses of evolutions of the kinetic and thermal energy associated with the major and minor stratospheric warmings in the winters of 1976–77 and 1975–76 respectively indicate that the predominant ultra-long waves in the stratosphere oscillated at periods of 10–20 days, whereas in the troposphere the predominant long waves oscillated at periods of 8 to 12 days. These tropospheric long waves are almost out-of-phase with the stratospheric ultra-long waves for the minor warming, but in-phase for the major warming. The kinetic energy of the zonal mean flow in the stratosphere for the minor warming is much greater than that for the major warming, indicating that the occurrence of a major warming depends on the magnitude of the kinetic energy of the zonal mean flow relative to that of the meridional convergence of the poleward flux of sensible heat. In both the major and minor warmings, most of the stratospheric eddy kinetic energy is contained in waves of wavenumbers 1 and 2, whereas the stratospheric available potential energy is primarily contained in waves of wavenumber 1. The kinetic energy associated with waves of wavenumber 1 appeared to be 180° out-of-phase with those of wavenumber 2, indicating that nonlinear transfer of kinetic energy occurred between waves of wavenumbers 1 and 2. The occurrences of wind reversals were accompanied by decouplings of the stratospheric and tropospheric motions, and blockings in the troposphere.  相似文献   

3.

Nonmodal growth (NG) and unstable normal mode growth are considered in spherical geometry. Two groups of initial conditions (IC) are studied: "connected" IC (common in Cartesian studies) and "separated" IC (based on observed conditions prior to cyclogenesis). Time series of growth rates are emphasized in conjunction with eigenmode projections. Projections show that early on normal mode growth was much stronger for connected IC and that NG caused negative growth early on of some variables for separated IC. Projections explain why amplitude, kinetic energy (KE), and potential vorticity have more NG than available potential energy (APE). Though varying between ICs and with initial phase shift, NG increases with wavenumber. For middle wavelengths, NG is significant and positive using connected IC but negative or small using separated IC. Total energy and KE growth rates of short waves are very similar during the first 2 days for both ICs. Amplitude time series closely follow KE in all cases studied. APE has less overlap than does KE between the main modes present, so less NG occurs for APE than for KE. In separated IC cases, APE growth rates evolve consistent with emergence of an unstable normal mode and little NG.  相似文献   

4.
太阳风动量涨落激发磁层亚暴的机制   总被引:2,自引:0,他引:2       下载免费PDF全文
本文将太阳风涨落传输能量产生磁层亚暴的机制推广到无碰撞等离子体过程。太阳风的涨落在磁层顶激发压缩阿尔文波,并在磁尾的无碰撞等离子体中传播。尾瓣中满足条件β?1,而等离子体片中β≥1,其中β为等离子体压力与磁压之比。这样,快磁声波在尾瓣中几乎不衰减,而在等离子体片中很快衰减,将波动能量耗散在等离子体片中使等离子体加热或者粒子加速。这种机制还表明,磁尾等离子体片中的高能粒子可以由太阳风涨落动能耗散而被加速,不一定是直接源于太阳。  相似文献   

5.
为了研究大气静力平衡适应过程的本质,利用波动理论和能量转换角度,分别对完全可压缩的等温大气模型、滞弹近似下的等温大气模型和层结中性大气模型进行研究比较.结果表明:大气静力平衡适应过程的本质是声波和混合声重力波对扰动能量的频散过程,滞弹近似模型和层结中性模型均不能完全描述此适应过程;在波动假设下,此三类大气模型中扰动物理量之间的偏振关系同波动的性质有关,气团的运动方程均为椭圆方程,声波和混合声重力波对气团运动的作用差异较显著.
大气静力平衡适应过程中扰动能量以有效势能、有效弹性势能、动能或波动能量的形式存在并相互转换;扰动有效势能与其他形式能量之间的转换与混合声重力波或者重力内波有关,扰动有效弹性势能与其他形式能量之间的转换与声波有关.在完全可压缩的等温大气模型中,扰动有效势能增加1个单位,其中69.9%来自扰动垂直动能,其余30.1%来自扰动有效弹性势能.  相似文献   

6.
Assuming eddy kinetic energy is equally partitioned between the barotropic mode and the first baroclinic mode and using the weekly TOPEX/ERS merged data for the period of 1993~2007, the mean eddy kinetic energy and eddy available gravitational potential energy in the world oceans are estimated at 0.157 and 0.224 EJ; the annual mean generation/dissipation rate of eddy kinetic energy and available gravitational potential energy in the world oceans is estimated at 0.203 TW. Scaling and data analysis indicate that eddy available gravitational potential energy and its generation/dissipation rate are larger than those of eddy kinetic energy.  相似文献   

7.
lNTR0DUCTI0NThemechanismofsedimenttransp0rtinshall0wchanneIfiowscanbequitec0mplicateddependingupona)themechanismofsoildetachment,b)thesizeandshaperanges0ftheavailablesediment,c)thesedimentc0ncentrati0n,d)theenergeticc0nditi0n0ftheflow,e)thechannelsurfacec0nditi0n,Dtherateofwaterinfiltrati0nandg)thechemicalc0nstituentspresentinthes0ilandthesurfacewater.Th0ughthedetachment0fs0ilparticlesbyrainfallistheprimarys0urce0favailablesediment,theeffect0fdynarnicwaterwavesandwind-gustsals0playasignifi…  相似文献   

8.
运用双流体MHD方程描述电子和离子的行为, 采用非扰动理论, 把孤子看作经典粒子, 通过推导的赝势(也称Sagdeev势)方程, 结合数值计算来研究惯性区低-β等离子体中动力学Alfvén孤波的特性. 结果表明离子热效应对Alfvén孤波特性的影响不可忽略, 且在惯性区稀疏型孤波和压缩型孤波均存在. 此结论与Freja卫星在极区上空所观测结果吻合很好. Alfvén孤波携带有平行电场, 它对带电粒子的加速有重要作用, 这给极光粒子加速提供了一种可能的物理机制.  相似文献   

9.
In order to measure turbulent quantities in coastal waters, one must either avoid or confront the confounding effect of waves. In previous work, we have developed a method to cancel waves when using the variance technique to compute Reynolds stress from acoustic Doppler current profiler (ADCP) data. In this paper, we extend this wave cancellation methodology to measurements of turbulent kinetic energy and dissipation using velocities measured along a single acoustic beam. Velocity profiles were collected using a Teledyne/RDI 1,200 kHz ADCP and a Nortek AWAC. The AWAC has a vertical beam that was programmed by Nortek to deliver profiles of vertical velocity. Vertical velocities are desirable both because they eliminate sources of phase error in the wave cancellation procedure and because they constrain measurement uncertainty with respect to turbulent anisotropy. Results indicate that acoustic profiles taken in standard Doppler mode, to which the vertical beam of the AWAC was limited, were too noisy to resolve turbulence under the deployment conditions herein. Pulse-to-pulse coherent modes such as those available on the ADCP were sufficiently low noise to resolve turbulent signals; however, vertical beam data are not available for this device. Nevertheless, our wave cancellation methodology was successful in removing the overwhelming variance associated with waves from both instruments, allowing realistic estimates of Reynolds stress, turbulent kinetic energy, and dissipation from the ADCP. This method holds even more promise as low-noise operating modes are developed for vertical beam acoustic profiling instruments such as the AWAC.  相似文献   

10.
Data from the BMSW spectrometer, which measures the ion flux value and sometimes plasma parameters with a time resolution of 31 ms, allow the study of the parameters of turbulence of the solar wind and magnetosheath plasma on kinetic scales. In this work, the frequency spectra of the ion flux fluctuations before and after recording the interplanetary shock front in the Earth’s magnetosheath are compared based on these data. It is shown that, in contrast to the solar wind, where the exponential decay of the spectrum often occurs after the shock front on the kinetic scales, no such phenomenon is observed in the magnetosheath: the spectrum on these scales can be approximated by a power function in all the cases considered. In half of these cases, the spectrum slope on the kinetic scales does not change during the interplanetary shock propagation. The results indicate a weak impact of interplanetary shock waves on the parameters of the plasma turbulence. In addition, it is shown that an interplanetary shock does not change the level of intermittency of the ion flux in the magnetosheath at both low and high level before the front.  相似文献   

11.
A kinetic flux vector splitting (KFVS) scheme for shallow water flows based on the collisionless Boltzmann equation is formulated and applied. The scheme is explicit and first order in space and time with stability governed by the Courant condition. The consistency of the KFVS scheme with the shallow water equations is proven using the equivalent differential equations approach. The accuracy and efficiency of the KFVS scheme in modeling complex flow features are compared to those of the Boltzmann Bhatnagar–Gross–Krook (BGK) scheme as well as a Riemann-based scheme. In particular, all schemes are applied to (i) strong shock waves, (ii) extreme expansion waves, (iii) a combination of strong shock waves and extreme expansion waves, and (iv) a one-dimensional dam break problem. Additionally, the KFVS, BGK and Riemann schemes are applied to a one-dimensional dam break problem for which laboratory data is available. These test cases reveal that all three schemes provide solutions of comparable accuracy, but the KFVS model is 1.5–2 times faster to execute than the BGK scheme and 2–3 times faster than the Riemann-based scheme. The absence of the collision term from the Boltzmann equation not only makes the mathematical formulation of KFVS easy but also helps elucidate this approach to the novice. The accuracy, efficiency, and simplicity of the KFVS scheme indicate its potential in modeling an array of water resources problems. Due to the scalar nature of the Boltzmann equation, the extension of the KFVS scheme to 2-D surface water flows is straightforward.  相似文献   

12.
Abstract

The process of wave steepening in Long's model of steady, two-dimensional stably stratified flow over orography is examined. Under conditions of the long-wave approximation, and constant values of the background static stability and basic flow, Long's equation is cast into the form of a nonlinear advection equation. Spectral properties of this latter equation, which could be useful for the interpretation of data analyses under mountain wave conditions, are presented. The principal features, that apply at the onset of convective instability (density constant with height), are:

i) a power spectrum for available potential energy that exhibits a minus eight-thirds decay, in terms of the vertical wavenumber k z -;

ii) a rate of energy transfer across the spectrum that is inversely proportional to the wavenumber for large k z -;

iii) an equipartition between the kinetic energy of the horizontal motion and the available potential energy, under the longwave approximation, although all the disturbance energy is kinetic at the point where convective instability is initiated. It is also shown that features i) and ii) apply to more general conditions that are appropriate to Long's model, not just the long-wave approximation. Application to fully turbulent flow or to conditions at the onset of shearing instability are not considered to be warranted, since the development only applies to conditions at the onset of convective instability.  相似文献   

13.
John Z. Shi  Li‐Feng Lu 《水文研究》2007,21(13):1780-1786
A model of the wave and current boundary‐layer structure was developed using the k–ε turbulent closure model. The finite‐difference method was used to solve the governing equations. Vertical logarithmic grids and equal time steps were adopted. The following modelled simulations were obtained: (1) vertical profiles of wave velocity amplitude, eddy viscosity coefficient and turbulent kinetic energy with waves only; (2) vertical profiles of wave velocity amplitude, mean current velocity, eddy viscosity coefficient and turbulent kinetic energy with waves having a following current. To test the validity and the rationality of the present model, vertical profiles of modelled wave velocity amplitude and mean velocity were compared with corresponding experimental results available in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we address the question of energy leakage from turbulence to internal waves (IWs) in the oceanic mixed layer (OML). If this leakage is substantial, then not only does this have profound implications as far as the dynamics of the OML is concerned, but it also means that the equation for the turbulence kinetic energy (TKE) used in OML models must include an appropriate sink term, and traditional models must be modified accordingly. Through comparison with the experimental data on grid-generated turbulence in a stably stratified fluid, we show that a conventional two-equation turbulence model without any IW sink term can explain these observations quite well, provided that the fluctuating motions that persist long after the decay of grid-generated turbulence are interpreted as being due to IW motions generated by the initial passage of the grid through the stably stratified fluid and not during turbulence decay. We conclude that there is no need to postulate an IW sink term in the TKE equation, and conventional models suffice to model mixing in the OML.  相似文献   

15.
根据完全动力论理论,证明了可由简化漂移动力论方程求得动力Alfven波色散方程,即横向用磁流体力学方程,纵向用Vlasov方程,在初级近似下由此推导出适合于日冕和太阳风的色散关系和Landau阻尼,得到在性质上与MHD Alfven波完全不同的动力Alfven波,太阳风中Alfven湍流很容易由动力Alfven波演化而来。提出由动力Alfren波构筑太阳风高速流模型将更符合观测结果。  相似文献   

16.
Summary The decay of waves of small amplitude in a viscous liquid of finite depth is investigated. It is shown that the various modes may be conveniently classified and that in many limiting cases the modes of aperiodic decay are of particular importance. Detailed numerical results are given for these modes.  相似文献   

17.
The energy conversion between potential and kinetic energy and the generation of available potential energy are computed over North America. The relative contribution from each latitude belt within the region, for each field, have been discussed.  相似文献   

18.
Fourier analysis of the monthly mean northern hemispheric geopotential heights for the levels 700 mb and 300 mb are undertaken for the months of April through to August. The wave to wave and wave to zonal mean flow kinetic energy interactions are computed for specified latitude bands of the northern hemisphere during the pre-monsoon period (April to May) and monsoon period (June through to August) for bad monsoon years (1972, 1974, 1979) and for years of good monsoon rainfall over India (1967, 1973, 1977). Planetary scale waves (waves 1 to 4) are the major kinetic energy source in the upper atmosphere during the monsoon months. Waves 1 and 2 in particular are a greater source of kinetic energy to other waves via both wave to wave interactions as well as wave to zonal mean flow interactions in good monsoon years than in bad monsoon years. The zonal mean flow shows significantly larger gains in the kinetic energy with a strengthening of zonal westerlies in good monsoon years than in bad monsoon years.  相似文献   

19.
The quality factor of the free oscillations of the earth is calculated from the observed time rate of decay of the energy. Records of the I.P.G.P. long-period data acquisition system are used, after a process enhancing a chosen mode, so that the scatter in the Q results is reduced. Determination of attenuation is made for the spheroidal and torsional fundamental modes and two torsional higher modes.The attenuation of seismic waves is determined from the decay of energy of standing-wave patterns with time, and from the damping of travelling waves with distance, using the surface mantle waves recorded at a single I.P.G.P. long-period seismic station after each great circle path (Gaulon, 1971).  相似文献   

20.
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号