首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effect of Hall current on the hydromagnetic free-convection flow of an electrically-conducting viscous incompressible fluid past an impulsively accelerated vertical porous plate in the presence of a uniform transverse magnetic field subjected to a constant transpiration velocity is analyzed for the case of small magnetic Reynolds number. Numberical solutions are obtained for the axial and transverse components of the velocity as well as the skin-friction by employing the Crank-Nicolson implicit finite-difference method for all probable values of the Prandtl number. The results are discussed with the effects of the Grashof number Gr, the transpiration velocity parameter , the Hall current parameterm, and the magnetic field parameterM for the Prandtl number Pr=0.71 which represents air at 20° C.  相似文献   

2.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically conducting fluid past a uniformly accelerated infinite vertical porous plate is discussed. Finite-difference method has been used to obtain the solution of the governing equations when the Prandtl number is not equal to unity. The velocity profiles have been shown graphically for both cases, cooling and heating of the porous plate. The numerical values of the skin-friction are entered in table and the effects of the various parameter are discussed on the flow field.  相似文献   

3.
The effect of a uniform transverse magnetic field on the free-convection and mass-transform flow of an electrically-conducting fluid past an infinite vertical plate for uniformly accelerated motion of the plate through a porous medium is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expression for the velocity field and skin-friction are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed.  相似文献   

4.
The flow of an electrically conducting incompressible rarefied gas due to the combined buoyancy effects of thermal and mass diffusion past an infinite vertical porous plate with constant suction has been studied in the presence of uniform transverse magnetic field. The problem has been solved for velocity, temperature, and concentration fields. It has been observed that mean velocity and the mean temperature are affected by the Grashof numbersG 1 andG 2, the slip parameterh 1, temperature jump coefficienth 2, concentration jump coefficienth 3 and magnetic field parameterM. The amplitude and the phase of skin-friction and the rate of heat transfer are affected by frequency in addition to the above parameters. They are shown graphically. The numerical values of the mean skin-friction and the mean rate of heat transfer are also tabulated.  相似文献   

5.
An analysis of a two-dimensional steady-free convection and mass transfer flow of an incompressible, viscous, and electrically conductive non-Newtonian fluid through a porous medium bounded by a vertical infinite limiting surface (plane wall) has been presented in the presence of a transverse magnetic field. Approximate solutions to the coupled nonlinear equations governing the flow are derived and expression for the velocity, temperature, concentration, the rate of heat transfer, and the skin-friction are derived. Effects of Gr (Grashof number), Gm (modified Grashof number),M * (non-Newtonian parameter),N (magnetic parameter), and permeabilityK of the porous medium on the velocity, the skin-friction and the rate of heat transfer are discussed when the surface is subjected to a constant suction velocity.  相似文献   

6.
The effects of free convection on the accelerated flow of a viscous, incompressible and electrically conducting fluid (e.g. of a stellar atmosphere) past a vertical, infinite, porous limiting surface (e.g. of a star) in the presence of a transverse magnetic field, is considered. The magnetic Reynolds number of the flow is taken to be small enough, so that the induced magnetic field is negligible. Expressions for velocity and skin-friction are obtained by using Laplace transform, when the Prandtl number is equal to one (P=1). Graphs showing variations of velocity and skin-friction, for different values ofG (Grashof number) andM (magnetic parameter) are plotted, and the results of them are discussed.  相似文献   

7.
This article studies the laminar flow of an electrically conducting non-Newtonian fluid (Rivlin-Encksen type) past an infinite porous flat plate to a step function change in suction velocity in the presence of a transverse magnetic field. The Laplace transform technique has been employed to solve the basic differential equations. The solutions of the velocity profile and skin-friction are obtained and the effects of the visco-elastic parameter, the magnetic field and the time parameter on the fluid flow have been studied in several tables.  相似文献   

8.
There have been considered the effects of external temperature-dependent heat sources and mass transfer on free convection flow of an electrically conducting viscous fluid past an impulsively starting infinite vertical limited surface in presence of a transverse magnetic field as considered. Solutions for the velocity and skin-friction, in closed form are obtained by using the Laplace transform technique and the results obtained for various values of the parametersS c (Schmidt number),M (Hartmann number), andS (Strength a Source or Sink) are given in graphical form. The paper is concluded with a discussion on the obtained results.  相似文献   

9.
The effects of Hall current on the oscillatory hydromagnetic boundary-layer flow under variable suction, past an infinite porous flat plate in the presence of a transverse magnetic field is discussed. The expressions for velocity and skin-friction are obtained and their variations for small and large frequency of oscillations are extensively discussed.  相似文献   

10.
The unsteady free-convection flow of an electrically-conducting fluid near an oscillating vertical plate of infinite extent, is studied in the presence of a uniform transverse magnetic field. Exact solutions for velocity, temperature and skin friction are obtained with the aid of the Laplace transform method, when the plate is oscillating harmonically in its own plane. The influence of various parameters, entering into the problem, is discussed for the velocity field and skin-friction.  相似文献   

11.
The effect of rotation on unsteady free-convective started vertical plate is considered. It is assumed that the induced magnetic field is negligible compared to the applied magnetic field, which is fixed with the moving plate. Mathematical expressions for velocity and skin-friction are obtained by the Laplace transform technique. The profiles for velocity components are shown graphically with the effects of the rotation parameter, magnetic parameter and Grashof number. The numerical values of skin-friction components are given in tabalar form for different values of the parameters.  相似文献   

12.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically conducting fluid past an exponentially accelerated infinite vertical plate is analysed for both cases, when the magnetic lines of force are fixed relative to the fluid and the plate, respectively. The Laplace transform method is used to obtain the expressions for velocity and skin-friction. The effect of a magnetic parameter is to decrease the velocity of water when the magnetic field is fixed to the fluid, while it increases the velocity field when the magnetic lines of force are fixed relative to the plate.  相似文献   

13.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically-conducting fluid past an infinite, vertical, porous plate for both classes of impulsive as well as uniformly-accelerated motion of the plate is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expressions for the velocity field and skin friction for both cases are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed with the help of graphs and tables.  相似文献   

14.
An analysis of the mass transfer and free convection effects on the unsteady laminar accelerated flow of a viscous incompressible fluid past an infinite vertical porous limiting surface is presented when the free stream is accelerated and the limiting surface temperature and concentration changes with step-wise variations. Expressions for velocity and skin-friction are obtained by using Laplace transform, when the Prandtl number and the Schmidt number are equal to one. Graphs showing variations of velocity and skin-friction, for different values of Gr (Grashof number) and Gc (modified Grashof number) are plotted, and the results of them are discussed.  相似文献   

15.
A numerical solution for unsteady hydromagnetic free-convection currents of a viscous incompressible and electrically conducting fluid induced by a vertical moving infinite plate is considered for constant heat flux at the plate. Velocity and skin-friction have been worked out for various values of the parameters occuring into the problem. It is found that magnetic parameter has a retarding effect on the velocity of air and water, while skin-friction increases with it.  相似文献   

16.
Analytical study is performed to examine heat and mass transfer characteristics of natural convection flow of an incompressible, rarefied visco-elastic fluid past an infinite vertical porous plate with constant suction in the presence of transverse magnetic field under combined buoyancy force effects of thermal and mass diffusion. The effects of various parameters on mean velocity and mean skin-friction are shown graphically followed by a comparative study of Newtonian and non-Newtonian (visco-elastic). rarefied states.  相似文献   

17.
Rotation effect on the hydromagnetic free-convection flow of an electrically conducting, viscous, and incompressible fluid past a steadily moving vertical porous plate has been analysed in the presence of a transverse magnetic field. The free-stream velocity oscillates in time about a constant mean, while the suction velocity, normal to the porous plate, is constant. The magnetic Reynolds number of the flow is taken small enough so that the induced magnetic field can be neglected. The plate temperature is constant and the difference between the temperature of the plate and the free stream is moderately large causing the free-convection currents. The flow field is described by nonlinar coupled system of equations. With viscous dissipative heat taken into account, approximate solutions of the problem are obtained for the components of velocity field and temperature field as well as for the skin-friction components and rate of heat transfer.  相似文献   

18.
The flow past an infinite vertical isothermal plate started impulsively in its own plane in a viscous incompressible and electricalfy conducting fluid has been presented in a rotating system. The magnetic Reynolds number is assumed small so that the induced magnetic field can be neglected. The governing equations of the flow are solved by defining a complex variable with the help of the Laplace transform technique. The influence of the various parameters, occurring into the problem, on the axial and transverse components of the velocity and skin-friction is extensively discussed with the help of graphs and table.  相似文献   

19.
The effects of the mass transfer on free convection flow of an electrically conducting viscous fluid (e.g., of a stellar atmosphere) past an impulsively started infinite vertical limiting surface (e.g., of a star) in presence of a transverse magnetic field is considered. Solutions for the velocity and skin-friction, in closed form are obtained with the help of the Laplace transform technique and the results obtained for various values of the parametersS c (Schmidt number),P (Prandtl number) andM (Hartmann number) are given in graphical form. The paper is concluded with a discussion of the results obtained.  相似文献   

20.
The flow of a viscous incompressible and electrically conducting fluid produced by harmonically oscillating wall of infinite extent in presence of a transverse magnetic field is considered. Exact solutions for velocity, induced magnetic field, electrical current density and skin-friction are obtained when the magnetic Prandtl number is unity. It is shown that the velocity has a phase lag with respect to the oscillations of the wall. This phase lag is found to be significantly affected by the applied magnetic field.On study-leave from Defence Science Laboratory, Delhi, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号