首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to improve the reliability of climate reconstruction, especially the climatologies outside the modern observed climate space, an improved inverse vegetation model using a recent version of BIOME4 has been designed to quantitatively reconstruct past climates, based on pollen biome scores from the BIOME6000 project. The method has been validated with surface pollen spectra from Eurasia and Africa, and applied to palaeoclimate reconstruction. At 6 cal ka BP (calendar years), the climate was generally wetter than today in southern Europe and northern Africa, especially in the summer. Winter temperatures were higher (1–5°C) than present in southern Scandinavia, northeastern Europe, and southern Africa, but cooler in southern Eurasia and in tropical Africa, especially in Mediterranean regions. Summer temperatures were generally higher than today in most of Eurasia and Africa, with a significant warming from ∼3 to 5°C over northwestern and southern Europe, southern Africa, and eastern Africa. In contrast, summers were 1–3°C cooler than present in the Mediterranean lowlands and in a band from the eastern Black Sea to Siberia. At 21 cal ka BP, a marked hydrological change can be seen in the tropical zone, where annual precipitation was ∼200–1,000 mm/year lower than today in equatorial East Africa compared to the present. A robust inverse relationship is shown between precipitation change and elevation in Africa. This relationship indicates that precipitation likely had an important role in controlling equilibrium-line altitudes (ELA) changes in the tropics during the LGM period. In Eurasia, hydrological decreases follow a longitudinal gradient from Europe to Siberia. Winter temperatures were ∼10–17°C lower than today in Eurasia with a more significant decrease in northern regions. In Africa, winter temperature was ∼10–15°C lower than present in the south, while it was only reduced by ∼0–3°C in the tropical zone. Comparison of palaeoclimate reconstructions using LGM and modern CO2 concentrations reveals that the effect of CO2 on pollen-based LGM reconstructions differs by vegetation type. Reconstructions for pollen sites in steppic vegetation in Europe show warmer winter temperatures under LGM CO2 concentrations than under modern concentrations, and reconstructions for sites in xerophytic woods/scrub in tropical high altitude regions of Africa are wetter for LGM CO2 concentrations than for modern concentrations, because our reconstructions account for decreased plant water use efficiency.  相似文献   

2.
Postglacial fire history has been reconstructed for eastern Canada from charcoal-influx anomalies from 30 sites taken from a lacustrine charcoal database. The reconstruction exhibits coherent patterns of fire occurrence in space and time. The early Holocene is characterised by high fire incidence. There is a major change to much lower occurrence slightly after 8 ka BP. A return to more fire appears after 3 ka BP. This sequence does not fit with the hydro-climatic reconstruction deduced from lake level reconstructions for northeastern North America, which indicates a dry early and mid-Holocene, and a wet late-Holocene. Fire occurrence however closely matches summer relative humidity inferred from δ18O. The differences between fire frequency and lake level history, are due to changes in the seasonality of precipitation and drought frequency. Lake levels are essentially controlled by winter precipitation while summer precipitation controls fire occurrence. The early Holocene before 8–7.5 ka BP experienced dry summers due to higher solar radiation and dry adiabatic winds from the residual Laurentide Ice Sheet. The middle Holocene was dominated by wet summers due to stability of the Atlantic air mass over eastern Canada. After 2.5 ka BP, summers became drier, albeit not as fire-conducive as during the early Holocene. Late-Holocene summers conducive to fire are explained by more frequent incursions of dry Cool Pacific or Cold Arctic air masses over eastern Canada. Received: 25 January 1999 / Accepted: 14 December 1999  相似文献   

3.
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM–PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators.  相似文献   

4.
Climate model simulations available from the PMIP1, PMIP2 and CMIP (IPCC-AR4) intercomparison projects for past and future climate change simulations are examined in terms of polar temperature changes in comparison to global temperature changes and with respect to pre-industrial reference simulations. For the mid-Holocene (MH, 6,000 years ago), the models are forced by changes in the Earth’s orbital parameters. The MH PMIP1 atmosphere-only simulations conducted with sea surface temperatures fixed to modern conditions show no MH consistent response for the poles, whereas the new PMIP2 coupled atmosphere–ocean climate models systematically simulate a significant MH warming both for Greenland (but smaller than ice-core based estimates) and Antarctica (consistent with the range of ice-core based range). In both PMIP1 and PMIP2, the MH annual mean changes in global temperature are negligible, consistent with the MH orbital forcing. The simulated last glacial maximum (LGM, 21,000 years ago) to pre-industrial change in global mean temperature ranges between 3 and 7°C in PMIP1 and PMIP2 model runs, similar to the range of temperature change expected from a quadrupling of atmospheric CO2 concentrations in the CMIP simulations. Both LGM and future climate simulations are associated with a polar amplification of climate change. The range of glacial polar amplification in Greenland is strongly dependent on the ice sheet elevation changes prescribed to the climate models. All PMIP2 simulations systematically underestimate the reconstructed glacial–interglacial Greenland temperature change, while some of the simulations do capture the reconstructed glacial–interglacial Antarctic temperature change. Uncertainties in the prescribed central ice cap elevation cannot account for the temperature change underestimation by climate models. The variety of climate model sensitivities enables the exploration of the relative changes in polar temperature with respect to changes in global temperatures. Simulated changes of polar temperatures are strongly related to changes in simulated global temperatures for both future and LGM climates, confirming that ice-core-based reconstructions provide quantitative insights on global climate changes. An erratum to this article can be found at  相似文献   

5.
Z. Guo  T. Liu  J. Guiot  N. Wu  H. Lü  J. Han  J. Liu  Z. Gu 《Climate Dynamics》1996,12(10):701-709
Three loess sections in the Loess Plateau of China have been studied to characterize the variations of the East Asian monsoon climate in the Late Quaternary period. Paleo-weathering profiles based on two weathering indices reveal a series of spatially correlative intervals of lower weathering intensity (LW), in the last glacial and late penultimate glacial loess, indicating significantly cooler or/and drier conditions. Most of them are identified at or near the transitional boundaries between loess and soil units, suggesting that climatic conditions favorable for LW events tended to occur at or near major climatic boundaries. Twenty-eight radiocarbon and thermoluminescence measurements, combined with Kukla's magnetic susceptibility age model date these events at ∼14, ∼21, ∼29, ∼38, ∼52, ∼71, ∼135, and ∼145 ka BP, with ∼5–10 ka frequency inlaid within the orbitally induced ∼20-ka periodicity. The ages of the first six events in the last glacial period are therefore close to those of the coarse-grained Heinrich layers in the North Atlantic Ocean, which resulted from massive discharges of icebergs. The results indicate that the climate in the area affected by the East Asian monsoon has experienced high-frequency changes more or less synchronous with the Heinrich events. These high-frequency changes have been reported by Porter and An, based on the grain-size time series from the Luochuan loess section. Our data also reveal that similar events also occurred during the penultimate glaciation. The mechanisms linking the Heinrich events and the East Asian monsoon climate may be similar to that driving the Younger Dryas event which has been identified in a large number of records in China and in the surrounding oceans. Received: 16 October 1995 / Accepted: 10 May 1996  相似文献   

6.
Sediment cores from Lake Titicaca contain proxy records of past lake level and hydrologic change on the South American Altiplano. Large downcore shifts in the isotopic composition of organic carbon, C/N, wt.%Corg, %CaCO3, and % biogenicsilica illustrate the dynamic changes in lake level that occurred during the past 20,000 years. The first cores taken from water depths greater than 50 meters in the northern subbasin of the lake are used to develop and extend the paleolake-level record back to the Last Glacial Maximum (LGM). Quantitative estimates of lake level are developed using transfer functions based on the 13C of modern lacustrine organic sources and the 13C of modern sedimented organic matter from core-tops. Lake level was slightly higher than modern during much of the post-LGM (20,000–13,500 yr BP) and lake water was freshunder the associated outflow conditions. The Pleistocene/Holocene transition (13,500–7,500 yr BP) was a period of gradual regression, punctuated by minor trangressions. Following a brief highstand at about 7250 yr BP, lake level dropped rapidly to 85 m below the modern level, reaching maximum lowstand conditions by 6250 yr BP. Lake level increased rapidly between 5000yr BP and 4000 yr BP, and less rapidly between 4000 yr BP and 1500 yr BP.Lake level remained relatively high throughout the latest Holocene with only minor fluctuations (<12 meters). Orbitally induced changes in solar insolation, coupled with long-term changes in El Niño-Southern Oscillation variability, are the most likely driving forces behind millennial-scale shifts in lake level that reflect regional-scale changes in the moisture balance of the Atlantic-Amazon-Altiplano hydrologic system.  相似文献   

7.
Insoluble dust concentrations and volume-size distributions have been measured for the new 581 m deep Dome C-EPICA ice core (Antarctica). Over the 27000 years spanned by the record, microparticle measurements from 169 levels, to date, confirm evidence of the drastic decrease in bulk concentration from the Last Glacial Maximum (LGM) to the Holocene (interglacial) by a factor of more than 50 in absolute value and of about 26 in flux. Unique new features revealed by the EPICA profile include a higher dust concentration during the Antarctic Cold Reversal phase (ACR) by a factor of 2 with respect to the Holocene average. This event is followed by a well-marked minimum that appears to be concomitant with the methane peak that marks the end of the Younger Dryas in the Northern Hemisphere. Particle volume-size distributions show a mode close to 2 7m in diameter, with a slight increase from the LGM to the Holocene; the LGM/Holocene concentration ratio appears to be dependent on particle size and for diameters from 2 to 5 7m it changes from 50 to 6. Glacial samples are characterised by well-sorted particles and very uniform distributions, while the interglacial samples display a high degree of variability and dispersion. This suggests that different modes of transport prevailed during the two climatic periods with easier penetration of air masses into Antarctica in the Holocene than during Glacial times. Assuming that southern South America remained the main dust source for East Antarctica over the time period studied, the higher dust content recorded during the ACR which preceded the Younger Dryas period, represents evidence of a change in South America environmental conditions at this time. A wet period and likely mild climate in South America is suggested at circa 11.5-11.7 kyr BP corresponding to the end of the Younger Dryas. The Holocene part of the profile also shows a slight general decrease in concentration, but with increasingly large particles that may reflect gradual changes at the source.  相似文献   

8.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   

9.
This paper uses pollen analysis to investigate and document the changing climate and vegetation during the Holocene based on a 400?cm core in depth obtained at a wetland site at Haligu (3,277?m a. s. l.) on the Jade Dragon Snow Mountain in Yunnan, China. By applying the Coexistence Approach to pollen data from this core, a quantitative reconstruction of climate over the last 9,300?years was made based on each pollen zone and individual core sample, which reveals the temperature and precipitation change frequently during that time. The qualitative analyses show that from 9300 to 8700?cal. yr BP, the vegetation was dominated by needle-leaved forest (mainly Pinus and Abies), indicating a slightly cool and moderately humid climate. Between 8700 and 7000?cal. yr BP, evergreen broad-leaved forest, dominated by Quercus, became the predominant vegetation type, replacing needle-leaved forest at this elevation, implying a warmer and more humid climate. During the period 7000 to 4000?cal. yr BP, the vegetation changed to mixed needle-leaved and evergreen broad-leaved forest, indicating a warm and moderately humid climate, but somewhat cooler than the preceding stage. From 4000 to 2400?cal. yr BP, the vegetation was again dominated by evergreen broad-leaved forest, but coniferous trees (mainly Pinus) began to increase, especially relative to a decline in Quercus. This implies that the climate remained warm and humid but slight drier than previously. The evergreen Quercus phase (8700–2400?yr BP) was designated as the Holocene climatic optimum in the Haligu core sediments. It is correlated with a markedly greater abundance and diversity of pteridophytes spores than was recorded before or after this period. From 2400?cal. yr BP to present, the vegetation was dominated by needle-leaved forest, of which Pinus formed the predominant component, accompanied by Abies and Tsuga. This reflects a slightly cooler, humid climate but also correlates with a period of increasing human settlement on the lower slopes of the mountain. At this elevated site, several hundred metres above the highest present day settlements, direct palynological evidence of anthropogenic activity is uncertain but we discuss ways in which the marked decline in Quercus pollen during this period may reflect the impact of ways in which natural resources of the mountain have been utilised.  相似文献   

10.
 An improved concept of the best analogues method was used to reconstruct the Last Glacial Maximum (LGM) climate from a set of botanical records from the former Soviet Union and Mongolia. Terrestrial pollen and macrofossil taxa were grouped into broad classes – plant functional types (PFTs), defined by the ecological and climatic parameters used in the BIOME1 model. PFT scores were then calibrated in terms of modern climate using 1245 surface pollen spectra from Eurasia and North America. In contrast to individual taxa, which exhibit great variability and may not be present in the palaeoassemblages, even in suitable climates, PFTs are more characteristic of the vegetation types. The modified method thus allows climate reconstruction at time intervals with partial direct analogues of modern vegetation (e.g. the LGM). At 18 kBP, mean temperatures were 20–29 °C colder than today in winter and 5–11 °C colder in summer in European Russia and Ukraine. Sites from western Georgia show negative, but moderate temperature anomalies compared to today: 8–11 °C in January and 5–7 °C in July. LGM winters were 7–15 °C colder and summers were 1–7 °C colder in Siberia and Mongolia. Annual precipitation sums were 50–750 mm lower than today across northern Eurasia, suggesting a weakening of the Atlantic and Pacific influences. Reconstructed drought index shows much drier LGM conditions in northern and mid-latitude Russia, but similar to or slightly wetter than today around the Black Sea and in Mongolia, suggesting compensation of precipitation losses by lower-than-present evaporation. Received: 11 May 1998 / Accepted: 25 September 1998  相似文献   

11.
Using unprecedented catalogues of past severe drought data for the Yucatan Peninsula between 1502 and 1900 coming from historical written documentation, we identified five conspicuous time lapses with no droughts between 1577–1647, 1662–1724, 1728–1764, 1774–1799 and 1855–1880, as well as time epochs with most frequent droughts between 1800 and 1850. Moreover, the most prominent periodicity of the historical drought time series was that of ∼40 years. Using the Palmer Drought Severity Index for the Yucatan Peninsula for the period 1921–1987 we found prominent negative phases between ∼1942–1946 and 1949–1952, 1923–1924, 1928–1929, 1935–1936, 1962–1963, 1971–1972 and 1986–1987. Two prominent periodicities clearly appear at ∼5 and 10 years. Most modern and historical severe droughts lasted 1 year, and share a quasi-decadal frequency. Also, in the first 66 years of the twentieth century the frequency of occurrence of severe drought has been lower compared with the nineteenth century. Some of the major effects and impacts of the most severe droughts in the Yucatan region are examined. We also studied the relation between historical and modern droughts and several large scale climate phenomena represented by the Atlantic Multidecadal Oscillation (AMO) and the Southern Oscillation Index (SOI). Our results indicate that historical droughts and the cold phase of the AMO coincide, while the influence of the SOI is less clear. The strongest coherence between historical droughts and AMO occurred at periodicities of ∼40 years. For modern droughts the coherence of a drought indicator (the Palmer Drought Severity Index) is similar with AMO and SOI, although it seems more sustained with the AMO. They are strongest at ∼10 years and very clearly with the AMO cold phase. Concerning the solar activity proxies and historical droughts, the coherence with a record of beryllium isotope Be10, which is a good proxy of cosmic rays, is higher than with Total Solar Irradiance. We notice that the strongest coherence between historical droughts and Be10 occurs at periods ∼60–64 years. When studying modern droughts and solar activity, frequencies of ∼8 years appear, and the coherences are similar for both sunspots and cosmic rays. Comparing natural terrestrial and solar phenomena, we found that the most sustained and strongest modulation of historical drought occurrence is at ∼60–64 years and is between the historical drought series and the solar proxy Be10. For modern droughts we notice that the coherence is similar among AMO, SOI and the solar indices. We can conclude that the sea surface temperatures (AMO) and solar activity leave their signal in terms of severe droughts in the Maya lands, however in the long term, the influence of the SOI on this type of phenomenon is less clear.  相似文献   

12.
The total extent of the atmospheric impacts associated to the aerosol black carbon (BC) emissions from South America is not completed described. This work presents results of BC monitored during three scientific expeditions (2002, 2003 and 2004) on board of a Brazilian oceanographic vessel Ary Rongel that covered the South–West Atlantic coast between 22–62°S. This latitudinal band encloses major urban regions of South America and the outflow region of the SACZ (South Atlantic Convergent Zone), which is an important mechanism of advective transport of heat, moisture, minor gases and aerosols from the South America continental land to the Southern Atlantic Ocean. Our results showed that aerosol BC enhanced concentrations from urban/industrial origin can be transported to the South–West Atlantic Ocean due to the migration of sub-polar fronts that frequently reach tropical/subtropical regions. Despite the decrease of aerosol BC concentrations southwards (from ∼1,200 ng m−3 at latitude 22°S to ∼10 ng m−3 at latitude 62°S), several observed peak events were attributed to regional urban activities. Most of such events could be explained by the use of air mass back trajectories analysis. In addition, a global model simulation is presented (Goddard Institute for Space Studies – GISS GCM BC simulation) to explore the origins of aerosol BC in the South–West Atlantic. The model allowed isolating the biomass emissions from South America and Africa and industrial (non-biomass) pollution from other regions of the globe. This model suggests that the apportionment of about half of the aerosol BC at the South–West Atlantic may derive from South American biomass burning.  相似文献   

13.
Summary This study investigates the capabilities of two regional models (the ICTP RegCM3 and the climate version of the CPTEC Eta model – EtaClim) in simulating the summer quasi-stationary circulations over South America during two extreme cases: the 1997–1998 El Ni?o and 1998–1999 La Ni?a. The results showed that both the models are successful in simulating the interannual variability of summer quasi-stationary circulation over South America. Both the models simulated the intensification of subtropical jet stream during the El Ni?o event, which favoured the blocking of transient systems and increased the precipitation over south Brazil. The models simulated the increase (decrease) of precipitation over north (west) Amazonia during the La Ni?a (El Ni?o) event. The upper level circulation is in agreement with the simulated distribution of precipitation. In general, the results showed that both the models are capable of capturing the main changes of the summer climate over South America during these two extreme cases and consequently they have potential to predict climate anomalies.  相似文献   

14.
 A general circulation model is used to examine the effects of reduced atmospheric CO2, insolation changes and an updated reconstruction of the continental ice sheets at the Last Glacial Maximum (LGM). A set of experiments is performed to estimate the radiative forcing from each of the boundary conditions. These calculations are used to estimate a total radiative forcing for the climate of the LGM. The response of the general circulation model to the forcing from each of the changed boundary conditions is then investigated. About two-thirds of the simulated glacial cooling is due to the presence of the continental ice sheets. The effect of the cloud feedback is substantially modified where there are large changes to surface albedo. Finally, the climate sensitivity is estimated based on the global mean LGM radiative forcing and temperature response, and is compared to the climate sensitivity calculated from equilibrium experiments with atmospheric CO2 doubled from present day concentration. The calculations here using the model and palaeodata support a climate sensitivity of about 1 Wm-2 K-1 which is within the conventional range. Received: 8 February 1997 / Accepted: 4 June 1997  相似文献   

15.
The numerical simulation experiment of climate at Last Glacial Maximum (LGM.21 ka BP) in China is made by using an atmospheric general circulation model (AGCM) coupled with land surface processes (AGCM+SSiB) and earth orbital parameters and boundary forcing conditions at21 ka.The modeled climate features are compared with reconstructed conditions at 21 ka from paleo-lake data and pollen data.The results show that the simulated climate conditions at 21 ka in China are fairly comparable with paleo-climatological data.The climate features at 21 ka in China from the experiment are characterized by a drier in the east and a wetter in the west and in the Tibetan Plateau as well.According to the analysis of distribution of pressure and precipitation,as well as the intensity of atmospheric circulation at 21 ka,monsoon circulation in eastern Asia was significantly weak comparing with the present.In the Tibetan Plateau,the intensity of summer monsoon circulation was strengthened,and winter monsoon was a little stronger than the present.The simulation with given forcing boundary conditions,especially the different vegetation coverage,can reproduce the climate condition at the LGM in China,and therefore provides dynamical mechanisms on the climate changes at 21 ka.  相似文献   

16.
The current study presents an assessment of the impact of climate change on water yield, one of the main hydrological ecosystem services, in northern Patagonia. The outputs of regional climate models from the CORDEX Project for South America were used to drive the InVEST water yield model. CORDEX regional climate models project for the far future (2071–2100) an increase in temperature higher than 1.5 °C and a precipitation decrease ranging from − 10 to − 30% for the study area. The projected warmer and dryer climate emerges as a robust signal based on model agreement and on consistent physical drivers of these changes. Moreover, both the projected increase in evapotranspiration and the decrease in precipitation contribute to a strong decrease in water yield of around − 20 to − 40% in the headwaters of northern Patagonian watersheds. Comparison of the results in the two basins reveals that the land cover may be considered a buffer of water yield changes and highlights the key role of protected areas in reducing the vulnerability of water resources to climate change.  相似文献   

17.
 The influence of different vegetation distributions on the atmospheric circulation during the Last Glacial Maximum (LGM, 21 000 years before present) is investigated. The atmospheric general circulation model of the Bureau of Meteorology Research Center was run using a modern vegetation and in a second experiment with a vegetation reconstruction for the LGM. It is found that a change from conifer to desert and tundra causes an additional LGM cooling of 1–2 °C in Western Europe, up to −4 °C in North America and −6 °C in Siberia. An expansion of dryland vegetation causes an additional annual cooling of 1–2 °C for Australia and northern Africa. On the other hand, an increase of temperature (2 °C) is found in Alaska due to changes in circulation. In the equatorial region the LGM vegetation leads to an increased modelled temperature of 0.5–1.5 °C and decreased precipitation (30%) over land due to a reduction of the tropical rainforest, mainly in Indonesia, where the reduction of precipitation over land is associated with an increase of precipitation of 30% over the western Pacific. Received: 15 December 1999 / Accepted: 10 January 2001  相似文献   

18.
 To investigate the cloud response during cold and warm periods, we have performed simulations of the Last Glacial Maximum (LGM-21ky BP) and of double CO2 concentration using the LMD AGCM model. We observe that the thermal characteristics of these two climates are opposite, but the cloud response is more complex and does not display the same symmetry When doubling the CO2, the warming of the troposphere and the cooling of the stratosphere are clearly linked with a reduction in low-level clouds and an increase of high-level clouds associated with relative humidity changes. For the LGM, the cloud response is more complex. In the inter tropical region, we show that the Hadley cell is reinforced during LGM (+20%) whereas it is reduced (−10%) for the double CO2 experiments. The most important feature is that we observe an enlarged Hadley cell for LGM climate which strongly modifies the atmospheric dynamics and water transport. For LGM conditions, the cloud response is then mostly driven by these dynamical changes at low latitudes though at high latitudes the thermal changes explain a large part of the cloud response. Two different versions of the model, using different parametrizations for the precipitation show that cloud feedbacks may act differently for cold and warm climates; and that the cloud response may be more complex that previously expected, but also indicate that the details of these effects are model dependent.  相似文献   

19.
We have studied the distribution of 327 clay mineral particles retrieved from four Antaretic ice smaples corresponding to present and Last Glacial Maximum (LGM) climate conditions. Illite, chlorite, smectite and kaolinite were identified in all samples. Focusing on kaolinite, because of its use as a possible tracer of low latitude soils, we find a significantly smaller amount for LGM samples while the dust concentration in snow during the LGM was about 30 times higher than for present climate conditions. This can be interpreted as change in the contribution of the Australian source with climate.A second approach was based on the modeling of the desert dust cycle using an Atmospheric General Circulation Model (AGCM) under both present-day and ice age conditions. Unlike mineralogical results, the model suggests the prevalence of the Australian dust source in the deposits over East Antarctica under both present-day and LGM climate conditions. However the model fails to reproduce the strong increase in dust deposits during the LGM. This discrepancy could be partly due to the lack of a higher latitude dust source in the model.The stronger dust input recorded in ice cores for the LGM could be related to an additional active high latitude source (possibly close to South America) overlapping the atmospheric background coming from low latitude areas.  相似文献   

20.
Three environmental change scenarios (the best scenario, the most likely scenario and the worst scenario) were used by the APSIM (Agricultural Production System sIMulator) Wheat module to study the possible impacts of future environmental change (climate change plus pCO2 change) on wheat production in the Mid-Lower North of South Australia. GIS software was used to manage spatial-climate data and spatial-soil data and to present the results. Study results show that grain yield (kg ha−1) was adversely affected under the worst environmental change scenario (−100% ∼ −42%) and the most likely environmental change scenario (−58% ∼ −3%). Grain nitrogen content (% N) either increased or decreased depending on the environmental change scenarios used and climate divisions (−25% ∼ +42%). Spatial variability was found for projected impact outcomes within climate divisions indicating the necessity of including the spatial distribution of soil properties in impact assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号