首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bio- and chronostratigraphy of the Eemian interglacial (marine isotope substage 5e) and an Early Weichselian glaciation (5d-a) established from representative and detailed sequences can be correlated with the deep-sea oxygen isotope stratigraphy, ice-core data, sea-level fluctuations and coupled ice sheet-climate models. Biostratigraphic sequences from Fennoscandian key sections are correlated with reference sequences from Estonia and from sections located near or beyond the margins of the last glaciation. Organic sediments previously attributed to Early and Middle Weichselian interstadial periods in Finland are argued to be redeposited and mixed older (last interglacial) material. Pollen and diatom spectra of the undisturbed materials suggest that the Eemian climatic optimum was followed by a continuously cooling climate and a regressive marine level. If only undisturbed sequences are considered, the major climatic fluctuations of the Early Weichselian, apparent in Central and Western Europe, are not apparent in the sequences from the central part of the glaciated terrain. Instead, some sequences are truncated by sediments indicating approaching ice sheets soon after the interglacial. This may imply that the ice sheet grew over Finland during the first Early Weichselian stadial. The preservation of the interglacial beds and the lack of younger non-glacial sediments support the interpretation that the area remained ice-covered until the final deglaciation. During the Early Weichselian, the Norwegian coast was probably occasionally ice free, similar to the coastal zone of Greenland today. The authors' interpretation of the Fennoscandian organic deposits of the last glaciation may also explain similar observations from the central parts of the Laurentide ice sheet.  相似文献   

2.
At Kap Herschell, in the outer fjord zone of central northeast Greenland, exposed sections in a Late Pleistocene ice-cored moraine revealed four major stratigraphic units deposited during the complex Kap Herschell Stade . All contain fragmented and redeposited marine shells that most likely belong to an Eemian or Early Weichselian marine episode. The oldest unit consists of buried ground ice with folded and sheared debris bands. Isotopic analyses show that the slope of the regression line for δ2H vs. δ18O of the ice is about 8.5. which suggests correlation with the Global Meteoric Water Line (GMWL). Data strongly suggest that the ground ice at Kap Herschell is a remnant of a Late Pleistocene glacier. It was probably generated at low altitudes (< 1000 m) in the inner fjord region or in the nunatak zone. The ground ice is unconformably overlain by all younger stratigraphic units, the oldest of which is a diamicton probably deposited as ablation till from the ice. A complex unit composed of mainly glaciolacustrine deposits and subordinate beds of fluvial and deltaic origin overlies the till and ground ice. Luminescence dating of the lacustrine sediments indicates maximum ages younger than 43 ka BP, suggesting deposition during isotope stages 3 or 2. The glaciolacustrine deposits suffered strongly from glaciotectonic deformation, caused by renewed glacier advance through the fjord. It reached the inner shelf and led to deposition of a discordant till at Kap Herschell, most probably during the Late Weichselian.  相似文献   

3.
A survey of the revised lateglacial varve chronology is given. Almost all revisions are based on new, independent measurements not yet finished. Compared with the old time scale, the preliminary datings (calendar years ± a margin of error) of the ice margin retreat are 'older', mainly due to the fact that the postglacial varve chronology has been extended by 365 years. This implies that the so-called zero year ( sensu De Geer 1940: limit of late glacial and beginning of postglacial varve sedimentation). earlier estimated at 6,923 B.C. (Nilsson 1964), is now dated 7,288 B.C. According to the new time scale, deglaciation from Stockholm to the area of zero-year formation in Indalsälven's valley lasted about 1,190 ± 40 years, compared with 1,073 years in De Geer's (1940) time scale or 1,092 in Jarnefors' (1963). Preliminary varve graph correlations, which are still very weak concerning the Fennoscandian moraine zone, indicate that the ice receded from Högsby, northwest of Kalmar at approximately 10,700+200−300 B.C. At localities just to the north of the Fennoscandian moraines, deglaciation started about 8,750+50−150 years B.C. according to the new varve measurements, and the ice front receded in southern Stockholm 8,470+40−140 B.C. Varve dating now gives older ages (calendar years) than 14C-dating; about 200–400 years older regarding some ice margin positions in south Sweden.  相似文献   

4.
Late Weichselian glacial sediments were studied in three sections west of Lund, southwest Sweden. The lowermost sedimentary unit is a lodgement till containing rock fragments derived from the northeast-east. Fabric analyses indicate successive ice flow directions: from the northeast, east-northeast, south-southeast and then east. The last active ice movement in the area was from the east. Above the lodgement till are deglaciation sediments consisting of meltout till, flow till and glaciofluvial sand and gravel deposited in a subaerial stagnant-ice environment. The uppermost unit consists of glaciolacustrine clay and silt, containing abundant ice-rafted debris, deposited during a short-lived transgression phase when stagnant ice was still present in the area. At the westernmost site investigated, the petrographical composition of the deglaciation deposits displays a gradual change, with upwards increasing components of Cretaceous chalky limestone. The presence of this rock type requires a period of glacial transport from the south. This stratigraphy cannot be explained with traditional glaciodynamic models. A possible scenario can, however, be constructed using a previously published model (Lagerlund, 1987) where marginal ice domes in the southwestern Baltic area interact with the main Scandinavian Ice Sheet.  相似文献   

5.
The mandible of a polar bear (Ursus maritimus Phipps) found in about 1920 at Kjul Å, North Jutland, and described by Nordmann & Degerbol in 1930. has been l4C dated to 11.100 ± 160 B.P. It is so far the only find of polar bear in Denmark. Comparison with recent 14C datings of Swedish and Norwegian polar bears shows that the Danish specimen was a member of a southern Scandinavian Late Weichselian population. The contemporaneous Zirphaeu sea deposits can be regarded as the boreal-arctic shallow water equivalent of the arctic Upper Saxicava sand deposits from northern Jutland. The polar bear mandible, however, was deposited on land, as was the metacarpal bone of a brown bear ( Ursus arctos ) from the nearby Nr. Lyngby locality of Allerød age. The overall picture of the Late Weichselian mammal fauna in Denmark shows a mixed composition of different ecotypes. Their sympatric occurrence points at a unique environment not comparable to any now existing, and probably related to the very low latitude of the Weichselian ice sheet.  相似文献   

6.
The following stratigraphy was found at Slettaelva, near Troms (from bottom to top): greenish basal till (unit A), laminated c lay (unit B), fossitiferous basal till (Unit C). Unit A probably derives from an early Weichselin local glaciation, Unit B comprises lacustrine sediments which were apparently deposited in an early Weichselian tundra-like enivironment, Unit C, which contains reworked fossils of moulluscs, palynomorphs and foraminifera, was deposited by a continenntal ice shcet. Amino acid ratios of Mya truncata and plaaeontological evidence indicate that unit Ccontains a mixed fossil assemblage, probably of Eemian and Weichselian interstadial age.  相似文献   

7.
This paper presents the results from stratigraphic and geomorphologic investigations in the Poolepynten area, Prins Karls Forland, western Svalbard. Field mapping, soil profile development and 14C dating reveal the existence of at least two generations of raised beach deposits. Well-developed raised beaches rise to the Late Weichselian marine limit at 36 m a.s.l. Discontinuous pre-Late Weichselian beach deposits rise from the Late Weichselian marine limit to approximately 65 m a.s.l. Expansion of local glaciers in the area during the Late Weichselian is indicated by a till that locally overlies pre-Late Weichselian raised beach deposits. Stratigraphic data from coastal sections reveal two shallow marine units deposited during part of oxygen isotope stage 5. The two shallow marine units are separated by a subglacially deposited till that indicates an ice advance from Prins Karls Forland into the Forlandsundet basin some time during the latter part of stage 5. Discontinuous glaciofluvial deposits and a cobble-boulder lag could relate to a Late Weichselian local glacial advance across the coastal site. Late Weichselian/early Holocene beach deposits cap the sedimentary succession. Palaeotemperature estimates derived from amino acid ratios in subfossil marine molluscs indicate that the area has not been submerged or covered by warm based glacier ice for significant periods of time during the time interval ca. 70 ka to 10 ka.  相似文献   

8.
Scattered marginal moraines in the Lyngen-Storfjord area proximally to the Tromsø-Lyngen moraine were formed by the Scandinavian ice-sheet during its retreat in the Preboreal. They correspond to ice-front positions in the main fjords and fjord-valleys where between three and four major and, in places, some minor ice-front accumulations occur. These have been correlated using the marine limits related to synchronous shorelines. Dates for the shorelines and moraines have been derived from a shoreline emergence curve based on 14C dated shore levels from North Norway. Two major, and probably at least one minor, climatically induced, glacial events are indicated: the Ørnes event c. 9800–9900±150 B.P., the Skibotn event 95–9600±150 B. P., and a younger event c. 9400±250 B. P. The inner fjord-valleys were probably deglaciated by c. 9100 B. P. Final deglaciation of the innerplateau during late Preboreal or early Boreal was characterized by downwasting.  相似文献   

9.
Thermoluminescence dating of Dimlington Stadial deposits in eastern England   总被引:2,自引:0,他引:2  
The loess component of a solifluction deposit of the Dimlington Stadial exposed at the inland site of Eppleworth in eastern England gave a thermoluminescence date of 17.5 ± 1.6 × 103 years. The solifluction deposit is overlain by a slightly weathered till correlated with the Skipsea Till of coastal exposures. which lies between organic horizons with radiocarbon dates of 18,500–18,240 B.P. and 13,045 B.P. Although the till must have been deposited during the Dimlington Stadial (after 18,240 B.P. at Dimlington and after 17,500 B.P. at Epplcworth), it gave apparent TL dates of 42.1 ± 3.6 × 103 years at Eppleworth and 102 ± 9 × 103 years at Dimlington, indicating that the components of the till were not exposed to light immediately before deposition.  相似文献   

10.
Studies of the stratigraphy, sedimentology, structure and isotope composition of a buried massive ice body and its encompassing sediments at Ledyanaya Gora in northwestern Siberia demonstrate that the ice is relict glacier ice, probably emplaced during the Early Weichselian. Characteristics of this ice body should serve as a guide for the identification of other relict buried glacier ice bodies in permafrost regions.  相似文献   

11.
The proposal for Quaternary stratigraphy of Norden published 1974 by Mangerud, Andersen, Berglund & Donner was discussed at a Nordie meeting 1978. On the basis of this discussion some recommendations are proposed here which deviate slightly from the 1974 proposal: (1) the term Flandrian should not be used in Norden until it is properly defined in the type area, (2) the Middle/Late Weichselian boundary should provisionally be defined as 25,000 14C years B. P. In addition it was stated that there is an urgent need for complete subdivision of the Weichselian into a continuous chronozone sequence.  相似文献   

12.
A glacial chronology for northern East Greenland   总被引:3,自引:1,他引:3  
In East Greenland between 75 and 76N three different glacial episodes can be identified: (1) An early period with more or less total ice cover and in which the ice reached out onto the continental shelf - the Kap Mackenzie stadial; (2) a period with glaciation of intermediate extent, when nunataks and a few ice-free lowland areas existed - the Muschelbjerg stadial; and (3) a final period with glacial advance, when the glaciers were mainly restricted to fjords and larger valleys - the Nanok stadial. Each of these stadials was followed by a period with general deglaciation, from which marine shell-bearing sediments have been found; the Hochstetter Forland interstadial, the Peters Bugt interstadial and the Flandrian interglacial, respectively. The marine limit sank with each of these ice-free periods; probably an isostatic effect of the decreasing amplitude of the glacial advances. The deglaciation after the Nanok stadial began about 9500 B.P. It is not known for certain when this glacial advance started, but 13,000 B.P. or earlier is suggested. According to 14C datings the Peters Bugt interstadial dates from at least 45,000 B.P. and the Hochstetter Forland interstadial from at least 49,000 B.P. However, amino acid analyses indicate a distinct age difference between these two interstadial, and Th/U datings give age estimates of 70,000–115,000 B.P. for the Hochstetter Forland interstadial, which therefore seems to be of Early Weichselian age although a pre-Weichselian age cannot be excluded. The same applies to the preceding Kap Mackenzie stadial. The correspondence between the present glacial chronology and similar tripartite ones on Bafffin Island, Ellesmere Island and Svalbard seems reasonably good  相似文献   

13.
Superimposed glacial and marine sediment exposed in coastal cliffs on Brøggerhalvøya, west Spitsbergen, contain four emergence cycles (episodes D, C, B, and A) that are related to glacial-isostatic depression and subsequent recovery of the crust. Tills are found in episodes C and B; in each case glaciation began with an advance of local glaciers, followed by regional glaciation. The marine transgression following episode C deglaciation reached 70 to 80 m above sea level. Glacial-marine and sublittoral sands within episode C contain a diverse and abundant microfauna requiring marine conditions more favorable than during the Holocene. We define this interval as the Leinstranda Interglacial. Based on the fauna, sedimentology and geochronology (radiocarbon, amino acid racemization, and uranium-series disequilibrium) we conclude that the Leinstranda Interglacial occurred during isotope substage 5e. Episode B deglaciation occurred late in isotope stage 5 (c. 70 ± 10 ka ago), and was followed by a marine transgression to about 50 m above sea level. The associated foraminifera, mollusca, and vertebrate fauna require seasonally ice-free conditions similar to those of the Holocene, but less ameliorated than during the Leinstranda Interglacial. A significant influx of Atlantic water into the Norwegian Sea, augmented by a local insolation maximum late in isotope stage 5, are required to produce shallow-water conditions similar to those of the Holocene. There is no evidence for major glacial activity during the Middle Weichselian (isotope stages 4 and 3), and we conclude that ice margins were not significantly different from those of the late Weichselian, but the record for this interval is scant. The extent of ice at the Late Weichselian maximum was less than during either of the two preceding episodes (B or C). Late Weichselian deglaciation (episode A) began prior to 13 ka B.P. Oceanic and atmospheric circulation patterns conducive to large-scale glaciation of western Spitsbergen are not well understood, but those patterns that prevailed during isotope stages 4,3, 2, and 1 did not produce a major glacial advance along this coast.  相似文献   

14.
The occurrence of till beds alternating with glaciomarine sediment spanning oxygen isotope stages 6 to 2, combined with morphological evidence, shows that the southwestern fringe of Norway was inundated by an ice stream flowing through the Norwegian Channel on at least four occasions, the last time being during the Late Weichselian maximum. All marine units are deglacial successions composed of muds with dropstones and diamictic intrabeds and a foraminiferal fauna characteristic of extreme glaciomarine environments. Land‐based ice, flowing at right angles to the flow direction of the ice stream, fed into the ice stream along an escarpment formed by erosion of the ice stream. Each time the ice stream wasted back, land‐based ice advanced into the area formerly occupied by the ice stream. During the last deglaciation of the ice stream (c. 15 ka BP), the advance of the land‐based ice occurred immediately upon ice stream retreat. As a result, the sea was prevented from inundating the upland areas, allowing most of the glacioisostatic readjustment to occur before the land‐based ice melted back at about 13 ka BP. This explains the low Late Weichselian sea levels in the area (10–20 m) compared with those of the Middle Weichselian and older sea‐level high stands (~200 m). Regional tectonic movements cannot explain the location of the observed marine successions. The highest sea level recorded (>200 m) is represented by glaciomarine sediments from the Sandnes interstadial (30–34 ka BP). Older interstadial marine sediments are found at somewhat lower levels, possibly as a result of subsequent glacial erosion in these deposits. Ice streams developed in the Norwegian Channel during three Weichselian time intervals. This seems to correspond to glacial episodes both to the south in Denmark and to the north on the coast of Norway, although correlations are somewhat hampered by insufficient dating control.  相似文献   

15.
The lithostratigraphy of pre‐Late Weichselian sediments and OSL‐dating results from four localities in the Suupohja area of western Finland, adjacent to the centre of the former Scandinavian glaciations, are presented. The studied sections expose glacifluvial, quiet‐water, littoral and aeolian deposits overlain by Middle and/or Late Weichselian tills. Litho‐ and biostratigraphical results together with seven OSL age determinations on buried glacifluvial sediment at Rävåsen (94±15 ka) and on till‐covered littoral and aeolian sediments at Risåsen, Rävåsen, Jätinmäki and Kiviharju (79±10 to 54±8 ka), accompanied by previous datings and interpretations, suggest that the glacifluvial sediments at Risåsen were deposited at the end of the Saalian Stage (MIS 6) and those at Risåsen were deposited possibly in the Early Weichselian Substage (MIS 5d?). Palaeosol horizons and ice‐wedge casts together with the dated littoral and aeolian sediments between the Harrinkangas Formation (Saalian) and the overlying till(s) indicate that western Finland was ice‐free during most of the Weichselian time. Littoral deposits, dated to the Middle Weichselian (MIS 4–3), occur at altitudes of 50–90 m a.s.l., which indicates significant glacio‐isostatic depression. The depression resulted from expansion of the ice sheet in the west of Finland at that time.  相似文献   

16.
Several Eemian (Mikulino) marine deposits are known from the northwestern part of Russia and from Estonia. The best-known deposits are situated at Mga, Russia and at Prangli, Estonia. Two new sites with clayey and silty deposits covered by till were studied for pollen and diatoms at Peski, Russia and Põhja-Uhtju, Estonia. At Peski, the deposit representing the Eemian Interglacial is 3.8 m thick at the depth of 13.4–9.6 m above present sea-level. At Põhja-Uhtju, the deposit representing the Eemian is 3.5 m thick at the depth of 47.9–51.4 m below present sea-level. Although Peski is situated at a higher altitude than Põhja-Uhtju at present, the diatom stratigraphy at these sites indicates deeper and more saline conditions in the Peski area than at Põhja-Uhtju during the Eemian. This result is similar to some previous studies, which indicate, that although the Russian deposits (e.g. Peski, Mga) are now at a higher altitude than those in Estonia (Põhja-Uhtju and Prangli), the diatoms in the Russian deposits are indicative of a considerable depth of water during the time of deposition. These deposits suggest that the Eemian shore levels ascend from Estonia eastwards, while the Late Weichselian and Holocene shorelines tilt downwards in the same general direction. The present material from Estonia and northwestern part of Russia shows marked differences between the Eemian and Late Weichselian/Holocene crustal deformations, which probably resulted from different ice loads during the final glaciation phases and probably also from different deglaciation patterns during the Saalian and Late Weichselian.  相似文献   

17.
A coastal cliff facing the ocean at the west coast of Spitsbergen has been studied, and seven formations of Weichselian and Holocene age have been identified. A reconstruction of the palaeoenvironment and glacial history shows that most of the sediments cover isotope stage 5. From the base of the section, the formation 1 and 2 tills show a regional glaciation that reached the continental shelf shortly after the Eemian. Formation 3 consists of glacimarine to marine sediments dated to 105,000–90,000 BP. Amino acid diagenesis indicates that they were deposited during a c . 10,000-year period of continuous isostatic depression, which indicates contemporaneous glacial loading in the Barents Sea. Foraminifera and molluscs show influx of Atlantic water masses along the west coast of Svalbard at the same time. Local glaciers advanced during the latter part of this period, probably due to the penetration of moist air masses, and deposited formation 4. A widespread weathering horizon shows that the glacial retreat was succeeded by subaerial conditions during the Middle Weichselian. Formation 5 is a till deposited during the Late Weichselian glacial maximum in this area. The glaciation was dominated by ice streams from a dome over southern Spitsbergen, and the last deglaciation of the outer coast is dated to 13,000 BP. A correlation of the events with other areas on Svalbard is discussed, and at least two periods of glaciation in the Barents Sea during the Weichselian are suggested.  相似文献   

18.
Bottomsets from glaciomarine deltas situated stratigraphically below and above the Weichselian maximum glaciation till at Skorgenes, western Norway, were tested for consolidation in an attempt to quantify the ice thickness at the time of deposition of the till. The value of the preconsolidation pressure in the lower unit (15 ± 1 MPa), indicates an ice thickness over the site of some 1350 ± 90 m. This is, however, only considered a minimum because values of preconsolidation pressures normally are lower than actual ice thickness would suggest due to incomplete drainage of the bed during consolidation. The estimated ice thickness indicates an ice surface some 400 m above the lower limit of the block field in the area, suggesting that this limit can not be used as a criterion for reconstructing the upper glacier surface for the Weichselian maximum glaciation in western Norway. Also, the nearest mountain peaks seemingly were completely ice covered, suggesting that no nunataks were present in that area.  相似文献   

19.
This study presents the Weichselian stratigraphy on Kriegers Flak in the southwestern Baltic Sea, and correlates it to new sections in southernmost Sweden and to previously published stratigraphic sequences from SW Skåne. A total of four Weichselian advances are identified based on our correlations. The oldest till, observed only on Kriegers Flak, is dated to the Early or Middle Weichselian and tentatively correlated to the Ristinge advance, previously identified in Denmark. It is overlain by three interstadial sediment units, starting with brackish clay and followed by terrestrial and lacustrine deposits, which have been dated to 42–36 ka, and finally by glaciolacustrine clay dated to 28.5–26 ka. After 30 ka, the Fennoscandian ice sheet advanced through the Baltic Basin and into the coastal areas of southernmost Sweden where the Allarp Till was deposited, followed by a deglaciation sequence. The uppermost tills, the Dalby Till and the Lund till, were deposited during the LGM advance and the subsequent re‐advances through the Baltic Basin. Based on the new evidence it has been possible to identify and date a Middle and Late Weichselian till succession in southern Sweden and provide a strong correlation to the established glacial stratigraphies in Sweden and Denmark.  相似文献   

20.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号