首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Mitra has suggested that the Superrotation of the upper atmosphere is caused by a deposition of meteoroids. The meteoroids are assumed to impart to the atmosphere the excess of their orbital angular momentum per unit mass over the Earth's angular momentum per unit mass. The process is to take place in the height region above 150 km. Only above this height is a Superrotation of the atmosphere observed. In this report the forces that tend to make the atmosphere corotate with the Earth are analysed. It is shown that the most important of these forces is ion drag, and not viscous drag as postulated by Mitra. As the net angular spin momentum imparted by the meteoroids seems to be less than Mitra's estimate and its main part is applied to the atmosphere at altitudes much lower than 150 km, the hypothesis that meteoroids provide a significant contribution to the Superrotation is rejected.  相似文献   

2.
The orbital migration of Jovian planets is believed to have played an important role in shaping the Kuiper Belt. We investigate the effects of the long time-scale (2×107 yr) migration of Jovian planets on the orbital evolution of massless test particles that are initially located beyond 28 AU. Because of the slowness of the migration, Neptune's mean motion resonances capture test particles very efficiently. Taking into account the stochastic behavior during the planetary migration and for proper parameter values, the resulting concentration of objects in the 3:2 resonance is prominent, while very few objects enter the 2:1 resonance, thus matching the observed Kuiper Belt objects very well. We also find that such a long time-scale migration is favorable for exciting the inclinations of the test particles, because it makes the secular resonance possible to operate during the migration. Our analyses show that the v8 secular resonance excites the eccentricities of some test particles, so decreasing their perihelion distances, leading to close encounters with Neptune, which can then pump the inclinations up to 20℃.  相似文献   

3.
A model of -bursts is considered that treats the flares of neutron stars as a result of convectiveoscillation instability associated with the stars having strong internal magnetic fields ( 1013 to 1014 G). In the context of this model only sufficiently old (104 to 107 yr), drastically cooled-down neutron stars may be sources of -bursts. The paper shows that major characteristics of a -burster in the Supernova N 49 remnant (energy release during burst up to 1044 erg, age 104 yr, burst-to-burst interval (I to 3)×106s; rotation period P=8 s) may be explained under the assumption that the mass of the neutron star is about 0.14M · while its mean magnetic field strength is 1.5×1014 G abd 1013 G within the star and on its surface, respectively. The observational tests of the model discussed conclude the paper.  相似文献   

4.
Several well-known binary X-ray sources have been reported to emit copious -radiation at energies up to and exceeding 1015 eV. It is proposed here that the observed events occur during episodes of non-steady accretion onto neutron stars, when MHD instabilities give rise to vortex motions onvery large scales deep inside the magnetosphere. The magnetic lines of force are strongly distorted and reconnect in neutral sheets, along which extremely high voltage drops are maintained and a small fraction of the particles are accelerated to ultra-relativistic energies. The -rays are produced in nuclear collisions undergone by runaway ions traversing regions of high-density, diamagnetic plasma in the accretion flow.  相似文献   

5.
The heating of coronal loops by resonant absorption of Alfvén waves is studied in compressible, resistive magnetohydrodynamics. The loops are approximated by straight cylindrical, axisymmetric plasma columns and the incident waves which excite the coronal loops are modelled by a periodic external driver. The stationary state of this system is determined with a numerical code based on the finite element method. Since the power spectrum of the incident waves is not well known, the intrinsic dissipation is computed. The intrinsic dissipation spectrum is independent of the external driver and reflects the intrinsic ability of the coronal loops to extract energy from incident waves by the mechanism of resonant absorption.The numerical results show that resonant absorption is very efficient for typical parameter values occurring in the loops of the solar corona. A considerable part of the energy supplied by the external driver, is actually dissipated Ohmically and converted into heat. The heating of the plasma is localized in a narrow resonant layer with a width proportional to 1/3. The energy dissipation rate is almost independent of the resistivity for the relevant values of this parameter. The efficiency of the heating mechanism and the localization of the heating strongly depend on the frequency of the external driver. Resonant absorption is extremely efficient when the plasma is excited with a frequency near the frequency of a so-called collective mode.  相似文献   

6.
The hypothesis that superrotation of the Earth's atmosphere results from meteoroid influx is untenable. Meteor observations are not of sufficient precision to substantiate direct rotation when the meteoroid influx is treated macroscopically. Detailed dynamic studies argue against any possible direct rotation.  相似文献   

7.
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceas-ing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilib-rium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on re- cent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.  相似文献   

8.
We simulated collisions of High Velocity Clouds with the galactic disk with a simple hydrodynamical code. Main aspects of the morphology of nearby (d < 500 pc) cloud complexes, like the Oph, Orion and Taurus-Auriga-Perseus complexes, are reproduced. These aspects include total mass, distance from the galactic plane, orientation of elongated gas structures with respect to the plane, and relative position of clusters of O-B stars with respect to the main concentrations of molecular gas. The space distribution of stars of different ages, usually explained in terms of sequential star formation, is interpreted in a new way in our model.  相似文献   

9.
Chromospheric lines, including Ha, Lyα, Lyβand CaⅡK, CaⅡ8542, are systemically and quantitatively investigated with respect to the non-thermal excitation and ionization due to particle beam bombardment for a series of solar semi-empirical atmospheric models. As a result we propose to use the contrast in the integrated intensity of hydrogen lines to estimate the total energy flux of the bombarding beam during the solar flare impulsive phase. Partial frequency redistribution is considered in the Lyαline calculation and a smaller intensity enhancement in the Ha line-centers is found than in the previous results of Fang et al.  相似文献   

10.
1 INTRODUCTION Filaments are cool, dense material suspended in the hot, tenuous corona. It is widely accepted that the global magnetic field surrounding the filaments plays a key role in their formation, structure and stability (Tandberg-Hanssen1995). Fil…  相似文献   

11.
Axford and McKenzie [1992] suggested that the energy released in impulsive reconnection events generates high frequency Alfvén waves. The kinetic equation for spectral energy density of waves is derived in the random phase approximation. Solving this equation we find the wave spectrum with the power law "−1" in the low frequency range which is matched to the spectrum above the spectral brake with the power low "−1.6." The heating rate of solar wind protons due to the dissipation of Alfvén waves is obtained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Observations indicate that solar coronal mass ejections (CMEs) are closely associated with reconnection-favored flux emergence, which was explained in the emerging flux trigger mechanism for CMEs by Chen & Shibata based on numerical simulations. We present a parametric survey of the triggering agent: its polarity orientation, position, and the amount of the unsigned flux. The results suggest that whether a CME can be triggered depends on both the amount and location of the emerging flux, in addition to its polarity orientation. A diagram is presented to show the eruption and non-eruption regimes in the parameter space. The work is aimed at providing useful information for the space weather forecast.  相似文献   

13.
R. Arlt 《Solar physics》2008,247(2):399-410
Original drawings by J.C. Staudacher made in the period of 1749 – 1796 were digitized. The drawings provide information about the size of the sunspots and are therefore useful for analyses sensitive to sunspot area rather than Wolf numbers. The total sunspot area as a function of time is shown for the observing period. The sunspot areas measured do not support the proposition of a weak, “lost” cycle between cycles 4 and 5. We also evaluate the usefulness of the drawings for the determination of sunspot positions for future studies.  相似文献   

14.
15.
We briefly describe the concept and method of “similar cycles” to be used in sunspot prediction. We have checked on the reliability of this method and made the comparison of the predictions and observations for the 23rd solar activity cycle.  相似文献   

16.
We investigate the linear amplitude of mass fluctuations in the universe, σ8, and the present mass density parameter of the Universe, Ωm, from statistical strong gravitational lensing. We use the two population model of lens halos with fixed cooling mass scale Mc = 3×1013h-1M⊙ to match the observed lensing probabilities, and leave σ8 orΩm as a free parameter to be constrained by the data. Another varying parameter, the equation of state of dark energy ω, and its typical values of -1, -2/3, -1/2 and -1/3 are investigated. We find that σ8 is degenerate with Ωm in a way similar to that suggested by present day cluster abundance as well as cosmic shear lensing measurements: σ8Ω0.6m≈0.33. However, both σ8≤0.7 and Ωm≤0.2 can be safely ruled out, the best fit is when σ8 = 1.0, Ωm = 0.3 and ω= - 1. This result is different from that obtained by Bahcall & Bode, who gave σ8 = 0.98±0.1 and Ωm = 0.17 ±0.05. For σ8 = 1.0, the higher value ofΩm = 0.35 requires ω = -2/3 and Ωm = 0.40 require  相似文献   

17.
We compute the characteristic parameters of the magneto-dipole radiation of a neutron star undergoing torsional seismic vibrations under the action of Lorentz restoring force about an axis of a dipolar magnetic field experiencing decay.After a brief outline of the general theoretical background of the model of a vibration-powered neutron star,we present numerical estimates of basic vibration and radiation characteristics,such as frequency,lifetime and luminosity,and investigate their time dependence on magn...  相似文献   

18.
We consider tensor–vector theories by varying the space-time–matter coupling constant (varying Einstein velocity) in a spatially flat FRW universe. We examine the dynamics of this model by dynamical system method assuming a ΛCDM background and we find some exact solutions by considering the character of critical points of the theory and their stability conditions. Then we reconstruct the potential V(A 2) and the coupling Z(A 2) by demanding a background ΛCDM cosmology. Also we set restrictions on the varying Einstein velocity to solve the horizon problem. This gives a selection rule for choosing the appropriate stable solution. We will see that it is possible to produce the background expansion history H(z) indicated by observations. Finally we will discuss the behavior of the speed of light (c E) for those solutions.  相似文献   

19.
The usefulness of the classical Geometrical Optics and Diffraction (GOD) has been illustrated for scattering of electromagnetic radiation by very large dielectric and absorbing spheres. Various scattering parameters such as extinction efficiency, asymmetry parameter, radiation pressure, etc., have been calculated on the basis of GOD and compared with the equivalent results obtained as per the Mie theory. The spheres are assumed to be composed of pure and impure silicate-like or polystyrene material in the visual wavelengths. The representative indices of refractionm=m–im are chosen to bem=1.6 andm=0.00, 0.05, 0.10, 0.30, 1.00, 2.00, and 4.00. It is shown that the asymptotic values of a given scattering parameter obtained from the Mie theory calculations agree reasonably well with the corresponding result based on GOD. It is thus possible to estimate the minimum value (x min) of the size-to-wavelength parameterx(=2a/;a, the radius of the sphere; and , the wavelength of the incident radiation), such that, forx>x min, GOD holds good for certain specified accuracy.  相似文献   

20.
L. Secco  D. Bindoni 《New Astronomy》2009,14(6):567-578
The theory of the Clausius’ Virial maximum to explain the fundamental plane (FP) proposed by Secco [Secco, L., 2000. NewA, 5, 403; Secco, L. 2001. NewA, 6, 339; Secco, L. 2005. NewA, 10, 439] is based on the existence of a maximum in the Clausius’ Virial (CV) potential energy of a early type galaxy (ETG) stellar component when it is completely embedded inside a dark matter (DM) halo. At the first order approximation the theory was developed by modeling the two-components with two cored power-law density profiles. An higher level of approximation is now taken into account by developing the same theory when the stellar component is modeled by a King-model with a cut-off. Even if the DM halo density remains a cored power-law the inner component is now more realistic for the ETGs. The new formulation allows us to understand more deeply what is the dynamical reason of the FP tilt and in general how the CV theory may really be the engine to produce the FP main features. The degeneracy of FP in respect to the initial density perturbation spectrum may be now full understood in a CDM cosmological scenario. A possible way to compare the FPs predicted by the theory with those obtained by observations is also exemplified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号