首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OSL (optically stimulated luminescence) sensitivity of quartz has been shown to either (1) record downstream sediment transport related to increased number and duration of light exposure cycles or (2) be a function of source geology, presenting a potential tool to track sediment provenance. To test these competing models this study leverages a suite of modern river samples from an extensional basin system in the Rocky Mountains of western USA (Bear River) and a retroarc foreland basin system in the southern Central Andes of Argentina (Río San Juan) to understand the relationships among quartz luminescence sensitivity, sediment transport distance, and catchment lithologies. We compare our results with petrographic analysis of the river sand composition, and characterization of the lithology and morphometrics of the river catchments. Samples taken along the Bear River and its major tributaries in the Rocky Mountains show a progressive downstream decrease in quartz OSL sensitivity that records variation in sediment provenance and steady contribution of lower OSL sensitivity quartz recycled from Palaeozoic passive margin stratigraphy. Andean river sand samples from the Rio San Juan network exhibit pervasive low sensitivity quartz derived from Andean arc volcanic rocks and recycled Neogene foreland basin strata. These modern river sand data do not show increased sensitivity with transport distance and instead indicates that in these landscapes, quartz OSL sensitivity is an intrinsic property of the source rock. Our study shows that river sands primarily composed of older, recycled low-strained quartz derived from quartzite lithologies exhibit the highest quartz sensitivity values. Moderate quartz OSL sensitivity values are observed in rivers with young igneous quartz derived directly from the volcanic and intrusive rocks. Conversely, microcrystalline quartz in chert lithic grains or polycrystalline quartz found in composite metamorphic lithic grains record the lowest quartz OSL sensitivity values. Determining the controlling factors of quartz sensitivity in river sand provides a current baseline for resolving paleogeographic and paleodrainage histories in the sedimentary record and provides further understanding of how sediments are eroded, transported, and deposited in fluvial systems with diverse tectonic settings and geologic source rocks.  相似文献   

2.
A large amount of the total sediment load in the Chinese Yellow River is transported during hyperconcentrated floods. These floods are characterized by very high suspended sediment concentrations and rapid morphological changes with alternating sedimentation and erosion in the main channel, and persistent sedimentation on the floodplain. However, the physical mechanisms driving these hyperconcentrated floods are still poorly understood. Numerical modelling experiments of these floods reveal that sedimentation is largely caused by large vertical concentration gradients, both in the channel during the rising stage of the flood, as well as on the floodplains, during a later stage of the flood. These vertical concentration gradients are large because the turbulent mixing rates are reduced by the increased sediment‐induced density gradients, resulting in a positive feedback mechanism that produces high deposition rates. Erosion prevails when the sediment is largely held in suspension due to hindered settling, and is strengthened by the reduced wetted cross‐section caused by massive sedimentation on the floodplain. Observed patterns of erosion and sedimentation during these floods can be qualitatively reproduced with a numerical model in which sediment‐induced density effects and hindered settling are included. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
《国际泥沙研究》2020,35(1):97-104
The flood season is the main period of flow,sediment transport,and sedimentation in the lower Yellow River(LYR).Within the flood season,most of the flow,sediment transport,and sedimentation occurs during flood events.Because of the importance of floods in forming riverbeds in the LYR,the regularity of sediment transport and sedimentation during floods in the LYR was studied.Measured daily discharge and sediment transport rate data for the LYR from 1960 to 2006 were used.A total of 299 floods were selected;these floods had a complete evolution of the flood process from the Xiaolangdi to the Lijin hydrological stations.For five hydrological stations(Xiaolangdi,Huayuankou,Gaocun,Aishan,and Lijin),a correlation was first established for floods of different magnitudes between the average sediment transport rate at a given station and the average sediment concentration at the closest upstream station.The results showed that the sediment transport rate at the downstream station was strongly correlated with the inflow(upstream station) sediment concentration during a flood event.A relation then was established between sedimentation in the LYR and the average sediment concentration at the Xiaolangdi station during a flood event.From this relation,the critical sediment concentrations were obtained for absolute erosion,sedimentation equilibrium,and absolute deposition during floods of different magnitudes in the LYR.The results of the current study contri b ute to a better understanding of the mechanisms of sediment transport and the regularity of sedimentation in the LYR during floods,and provide technical support to guide the joint operation of reservoirs and the regulation of the LYR.  相似文献   

4.
《国际泥沙研究》2020,35(1):79-90
Flash floods are the highest sediment transporting agent,but are inaccessible for in-situ sampling and have rarely been analyzed by remote sensing technology.Laboratory and field experiments were done to develop linear spectral unmixing(LSU) remote sensing model and evaluate its performance in simulating the suspended sediment concentration(SSC) in flash floods.The models were developed from continuous monitoring in the laboratory and the onsite spectral signature of river bed sediment deposits and flash floods in the Tekeze River and in its tributary,the Tsirare River.The Pearson correlation coefficient was used to determine the variability of correlations between reflectance and SSCs.The coefficient of determination(R2) and root mean square of error(RMSE) were used to evaluate the performance of the generated models.The results found that the Pearson correlation coefficient between SSCs and reflectance varied based on the level of the SSCs,geological colors,and grain sizes.The performance of the LSU model and empirical remote sensing approaches were computed to be R2=0.92,and RMSE=±0.76 g/1 in the Tsirare River and R2=0.91,and RMSE=±0.73 g/1 in the Tekeze River and R2=0.81,RMSE=±2.65 g/l in the Tsirare river and R2=0.76,RMSE=±10.87 g/l in the Tekeze River,respectively.Hence,the LSU approach of remote sensing was found to be relatively accurate in monitoring and modeling the variability of SSCs that could be applied to the upper Tekeze River basin.  相似文献   

5.
The behaviour of suspended sediment in rivers is often a function of energy conditions, i.e. sediment is stored at low flow and transported under high discharge conditions. The timing of maximum sediment transport can, however, also be related to mixing and routing of water and sediment from different sources. In this study suspended sediment transport was studied in the River Rhine between Kaub and the German–Dutch border. As concentrations decrease over a runoff season and as the relationship between water discharge and suspended sediment concentrations during most floods is characterized by clockwise hysteresis, it is concluded that sediment depletion occurs during a hydrological year and during individual floods. However, analyses of the sediment contribution from the River Mosel indicate that clockwise hysteresis may result from sediment depletion as well as from early sediment supply from a tributary. Thus, although the suspended sediment behaviour in the downstream part of the River Rhine is partly a transport phenomenon related to energy conditions, mixing and routing of water from different sources also plays an important role. Suspended sediment transport during floods was modelled using a ‘supply‐based’ model. Addition of a sediment supply term to the sediment rating curve leads to a model that produces better estimates of instantaneous suspended sediment concentrations during high discharge events. A major constriction of the model is that it cannot be used to predict suspended sediment concentrations as long as the amount of sediment in storage and the timing of sediment supply are unknown. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
通过对黄河中游北洛河的野外考察,在宜君基岩峡谷全新世风成黄土-土壤剖面中发现三层古洪水滞流沉积物(SWD).野外观察和室内实验分析,证明它们是北洛河特大洪水悬移质泥沙在高水位滞流环境下的沉积物.这些古洪水滞流沉积层夹在全新世中期古土壤之内,其每一层记录了一期特大洪水事件.利用古水文学方法恢复了古洪水洪峰水位和流量,确定...  相似文献   

7.
Floods have become increasingly important in fluvial export of water, sediment and carbon (C). Using high-frequency sampling, the export of water, sediment and C was examined in the Wuding River catchment on the Chinese Loess Plateau. With groundwater as an important contributor to runoff all year round, floods were relatively less important in the export of water. However, large floods were disproportionately important in exporting sediment and inorganic C (DIC) and organic C (DOC and POC). The three largest floods in each year transported 53.6–97.3 and 41.4–77% of the annual sediment and C fluxes, respectively. An extreme flood in 2017 alone contributed 94.6 and 73.1% of the annual sediment and C fluxes, respectively, in just 7 days, which included 20.3, 92.1 and 35.7% of the annual DOC, POC and DIC fluxes, respectively. A stable carbon isotope (δ13C) analysis of POC indicated that modern soils and C3 plants were its primary source. Furthermore, floods greatly accelerated CO2 degassing due to elevated gas transfer velocity, although stream water CO2 partial pressure (pCO2) exhibited a decreasing trend with flow discharge. Although these results illustrated that increasing runoff diluted pCO2, the timing and magnitude of floods were found to be critical in determining the response of pCO2 to flow dynamics. Low-magnitude floods in the early wet season increased pCO2 because of enhanced organic matter input, while subsequent large floods caused a lower pCO2 due to greatly reduced organic matter supply. Finally, continuous monitoring of a complete flood event showed that the CO2 efflux during the flood (2348 ± 664 mg C m–2 day–1) was three times that under low-flow conditions (808 ± 98 mg C m–2 day–1). Our study suggests that infrequent, heavy storm events, which are predicted to increase under climate change, will greatly alter the transport regimes of sediment and C. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
Sediments attributed to flooding events of River Danube concerning the bleaching of the optical stimulated luminescence (OSL) signal were investigated. It is demonstrated that the OSL signal in both quartz and feldspar is not completely but differentially bleached in the sediment grains. Partial bleaching of the samples is clearly indicated by the scatter of equivalent dose determined for several individual single aliquots. It is also shown that residual ages in feldspars are significantly higher than those calculated for quartz. It is furthermore demonstrated that analysing measurement-time dependent equivalent dose estimates is not a suitable method to identify partial bleaching in the investigated sediment grains. However, the transport and deposition process of the investigated samples was probably disturbed by an artificial input of sediment, and this case study may thus not be representative of undisturbed high flood events in the past.  相似文献   

9.
This study investigates the relation between channel changes, as mapped from aerial photography, and bed‐material transport along Chilliwack River, British Columbia. Detailed mapping of channel features was completed for five dates between 1952 and 1991 using an analytical stereoplotter. Data were transferred to a geographic information system (GIS) to analyse changes during four consecutive periods. Erosion and deposition volumes along channel reaches were estimated by multiplying measured areal changes by the bed‐material depth along each reach. Bed‐material transport rates are related to morphologic changes using a sediment budget approach. The highest rate of transport for the four study periods is estimated as 55 000 ± 10 000 m3 a−1 between 1983 and 1991. These rates are compared with estimates from short‐term (1–2 year) changes along the lower reach to investigate variations in sediment flux that may otherwise remain undetected. Significant morphologic change occurs roughly once every 5 years when flows are large enough to erode and entrain large volumes of bed material stored within the contemporary floodplain. In the absence of large floods, transport rates decline and vegetation begins to establish new floodplain. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Surface sediment samples in the Laptev Sea have average 137Cs content of 7.1 Bq kg(-1), a value intermediate between that of the western Kara Sea (23 Bq kg(-1) and the East Siberian Sea (4.2 Bq kg-'). Both surface sediment content and sediment inventory of 137Cs in the Laptev Sea sediments show significant variability, and the influence of a variety of environmental factors.137Cs concentrations in the Laptev Sea surface sediments range from 0.8 to 16 Bq kg(-1). There is a marked increase in 137Cs content of surface sediment samples collected near the Lena River delta, and a local enrichment in the 137Cs inventories at these sites is also evident. Fine-grained mixed-layer illite/ smectite rich sediments in the estuary provide effective adsorption sites to fix 137Cs, in spite of desorption processes associated with low salinities in estuarine mixing. The Lena River-Laptev Sea mixing zone is a major site of sea-ice production. River and shelf sediments are incorporated into sea-ice formed in this region (Holmes and Creager, 1974). The irregular 137Cs activity profiles of the Lena River estuary cores indicate disturbance or removal of 137Cs-laden sediments via sea-ice related processes. Lena River and Estuary sediments may have served as a secondary source (i.e. other than direct fallout) of 137Cs in sea-ice. North-east of the Lena River estuary, sediment contains a thin layer of 137Cs-bearing material over an erosion surface. The 137Cs-laden surface layer may be the result of transient deposition of estuarine sediments being delivered by sea-ice or spring floods.  相似文献   

11.
《国际泥沙研究》2020,35(4):365-376
The Yom River is one of the four major sediment sources to the Chao Phraya River in Thailand. Human activities and changes in climate over the past six decades may have affected the discharge and sediment load to some extent. In the current study, the river discharge and sediment characteristics in the mainstream of the Yom River were investigated using the field observation data from 2011 to 2013 and the historical river flow and sediment data from 1954 to 2014 at six hydrological stations operated by the Royal Irrigation Department of Thailand (RID). The non-parametric Mann-Kendall test and double mass curve were used to analyze the sediment dynamics and temporal changes in the discharge of the Yom River. The results revealed that the sediment was mainly transported in suspension, and the bed-to-suspended sediment loads ratio varied between 0 and 0.05. The daily suspended sediment load (SSL) in the upper and middle basins had a strong correlation with the daily discharge and could be represented by power equations with coefficients of determination higher than 0.8. The daily suspended sediment load in the lower basin did not directly depend on the corresponding discharge because of the reduction in river slope and water diversion by irrigation projects. It also appeared that the river discharges and sediment loads were mainly influenced by climate variation (floods and droughts). Moreover, the average sediment transport of the upper, middle, and lower reaches were 0.57, 0.71, and 0.35 million t/y, respectively. The sediment load in the lower basin decreased more than 50% as a result of changes in the river gradient (from mountainous to floodplain areas). The results from sediment analysis also indicated that the construction of the Mae Yom Barrage, the longest diversion dam in Thailand, and land-use changes did not significantly affect the sediment load along the Yom River.  相似文献   

12.
选择长江三峡出口部位的红花套断面,对现代长江主流线相沉积、泛滥沉积与三万年前的洪水沉积物粒度进行比较,据粒径大于1mm的粗颗粒粒度分析,发现三万年前的大洪水水动力强度可能是近现代大洪水水动力强度的1.5倍左右.据粒径大于80mm的巨砾粒度分析,三万年前的长江大洪水底流水动力可能是近现代大洪水底流水动力强度的1.35倍左右.因此推测三万年前的长江大洪水比近现代洪水大得多.  相似文献   

13.
The aim of this study was to establish the source and provenance of sediments deposited in a large floodplain sink during extreme floods in the Lockyer Creek catchment, Australia, in 2011 and 2013. We place the sediment source patterns in context of the longer-term record to determine whether coarse-grained sediment sources (i.e., very fine sand to very coarse sand) and the spatio-temporal pattern of (dis)connectivity have changed over time. We do this by matching the geochemical properties and age structure of a sediment profile located in a downstream floodplain sink to the elemental composition of source sediments. One hundred and fifty-seven sediment samples from 20 sites across the catchment are analysed using X-ray fluorescence (XRF) spectrometry to compare the elemental ratio composition of the downstream floodplain sink to its source materials. We use Optically Stimulated Luminescence (OSL) dating to determine the age structure of the sediments in the floodplain sink. The northern tributaries and parts of the Lockyer River trunk stream are the primary sources of coarse sediment. These areas are connected (coupled) to the lower trunk stream and floodplain sediment sink. Southern tributaries are largely disconnected (decoupled) and supply little sediment to the floodplain sediment sink. This pattern of sediment source contribution has remained similar over the last 6.8 ka at least. Sediment sources as observed in the 2011 flood have predominated over the mid-late Holocene whilst those in the 2013 flood are rare.  相似文献   

14.
We use three different approaches of optically stimulated luminescence (OSL) to study young fluvial sediments located at the main channels of one of the largest fluvial systems of North America: the Usumacinta–Grijalva. We use the pulsed photo‐stimulated luminescence (PPSL) system also known as portable OSL reader, full OSL dating and profiling OSL dating in samples extracted from vertical sediment profiles (n = 9) of riverbanks to detect changes in depositional rates of sediments and to obtain the age of the deposits. The results of the PPSL system show that the luminescence signals of vertical sediment profiles highly scattered from the top to the bottom contrast with the luminescence pattern observed on well‐reset sequences of fluvial deposits where luminescence increase from the top to the bottom of the profile. The profiling and full OSL ages yielded large uncertainty values on their ages. Based on the inconsistencies observed in both ages and luminescence patterns of profiles we suggest that these fluvial deposits were not fully reset during their transport. As an explanation, we propose that in the Usumacinta and Grijalva rivers the cyclonic storms during the wet season promote the entrainment of large volumes of sediments due to high‐erosional episodes around the basin resulting from hyper‐concentrated and turbid flows. We conclude that the PPSL, profiling and full OSL dating of sediments are useful tools to quantify and to assess the depositional patterns in fluvial settings during the Holocene. These techniques also can yield information about sites where increases in the sediment load of rivers may produce poorly resetting of grains affecting the results of OSL dating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

It is generally accepted that the celerity of a discharge wave exceeds that of a floodwave. The discharge wave is the initial wavefront (shown by an increase in stage at a particular site), whereas the floodwave refers to the body of water moving downstream. Yet, few studies have investigated the varying relationship between discharge and suspended sediment concentration as floods propagate downstream. This paper examines the relative velocities of the discharge and sediment waves for natural flood events on the River Severn, UK. Four monitoring stations were established within the upper 35 km reach of the River Severn (drainage basin area 380 km2). Discharge was monitored using fixed structures, and suspended sediment concentrations were monitored at similar locations using Partech IR40C turbidity meters. Results showed discharge wave celerity increased with flood magnitude, but relationships were more complex for sediment wave celerity. Sediment wave celerity was greater than discharge wave celerity, and is attributed to the dominant source of sediment, which is most probably bank erosion.  相似文献   

16.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
The lower Yellow River (LYR) is a fully alluvial system with a fine-grained bed that has a high proportion of silt.Bathymetric survey data collected with a Multi-Beam Echo Sounder (MBES) from the wandering reach of the LYR indicates that the bedforms are characterized by large aspect ratios (wavelength/height)and low lee-side angles.Since the Xiaolangdi Reservoir (XLD) has been operational in the middle reach of the Yellow River,bedforms have been dominated by two-scales of dunes,that is,a frame...  相似文献   

18.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

19.
Flood control of the Yangtze River is an important part of China’s national water security.In July 2020,due to continuous heavy rainfall,the water levels along the middle-lower reaches of the Yangtze River and major lakes constantly exceeded the warning levels,in which Taihu Lake exceeded its highest safety water level and some stations of Poyang Lake reached their highest water levels in its history.In August 2020,another huge flood occurred in the Minjiang River and the Jialing River in the upper Yangtze River,and some areas of Chongqing Municipality and other cities along the rivers were inundated,resulting in great pressure on flood control and high disaster losses.The 2020 Yangtze River flood has received extensive media coverage and raised concerns on the roles of the Three Gorges Dam and other large reservoirs in flood control.Here we analyze the changes in the pattern of the Yangtze River flood control by comparing the strategies to tackle the three heavy floods occurring in 1954,1998,and 2020.We propose that the overall strategy of the Yangtze River flood control in the new era should adhere to the principle of"Integration of storage and drainage over the entire Yangtze River Basin,with draining floods downstream as the first priority"by using both engineering and non-engineering measures.On the basis of embankments,the engineering measures should use the Three Gorges Dam and other large reservoirs as the major regulatory means,promote the construction of key flood detention areas,keep the floodways clear,and maintain the ecosystem services of wetlands and shoals.In terms of non-engineering measures,we should strengthen adaptive flood risk management under climate change,standardize the use of lands in flood detention areas,give space to floods,and promote the implementation of flood risk maps and flood insurance policies.The ultimate goal of this new flood control system is to enhance the adaptability to frequent floods and increase the resilience to extreme flood disasters.  相似文献   

20.
A sediment mass balance constructed for a 16‐km reach of the Snake River downstream from Jackson Lake Dam (JLD) indicates that river regulation has reduced the magnitude of sediment mass balance deficit that would naturally exist in the absence of the dam. The sediment budget was constructed from calibrated bed load transport relations, which were used to model sediment flux into and through the study reach. Calibration of the transport relations was based on bed load transport data collected over a wide range of flows on the Snake River and its two major tributaries within the study area in 2006 and 2007. Comparison of actual flows with unregulated flows for the period since 1957 shows that operations of JLD have reduced annual peak flows and increased late summer flows. Painted tracer stones placed at five locations during the 2005 spring flood demonstrate that despite the reduction in flood magnitudes, common floods are capable of mobilizing the bed material. The sediment mass balance demonstrates that more sediment exits the study reach than is being supplied by tributaries. However, the volume of sediment exported using estimated unregulated hydrology indicates that the magnitude of the deficit would be greater in the absence of JLD. Calculations suggest that the Snake River was not in equilibrium before construction of JLD, but was naturally in sediment deficit. The conclusion that impoundment lessened a natural sediment deficit condition rather than causing sediment surplus could not have been predicted in the absence of sediment transport data, and highlights the value of transport data and calculation of sediment mass balance in informing dam operations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号