首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modelling soil erosion with a downscaled landscape evolution model   总被引:1,自引:0,他引:1  
The measurement and prediction of soil erosion is important for understanding both natural and disturbed landscape systems. In particular numerical models of soil erosion are important tools for managing landscapes as well as understanding how they have evolved over time. Over the last 40 years a variety of methods have been used to determine rates of soil loss from a landscape and these can be loosely categorized into empirical and physically based models. Alternatively, physically based landscape evolution models (LEMs) have been developed that provide information on soil erosion rates at much longer decadal or centennial scales, over large spatial scales and examine how they may respond to environmental and climatic changes. Both soil erosion LEMs are interested in similar outcomes (landscape development and sediment delivery) yet have quite different methodologies and parameterizations. This paper applies a LEM (the CAESAR model) for the first time at time and space scales where soil erosion models have largely been used. It tests the ability of the LEM to predict soil erosion on a 30 m experimental plot on a trial rehabilitated landform in the Northern Territory, Australia. It then continues to discuss the synergies and differences between soil erosion and LEMs. The results demonstrate that once calibrated for the site hydrology, predicted suspended sediment and bedload yields from CAESAR show a close correspondence in both volume and timing of field measured data. The model also predicts, at decadal scales, sediment loads close to that of field measured data. Findings indicate that the small‐scale drainage network that forms within these erosion plots is an important control on the timing and magnitude of sediment delivery. Therefore, it is important to use models that can alter the DEM to reflect changing topography and drainage network as well as having a greater emphasis on channel processes. Copyright © 2012 John Wiley & Sons, Ltd. and Commonwealth of Australia  相似文献   

2.
Landscape evolution models(LEMs) are essential tools for analyzing tectonic-climate interactions and reproducing landform-shaping processes. In this study we used a LEM to simulate the evolution of the mountains from the central Hexi Corridor in the northeastern Tibetan Plateau, where the climate is arid and the surface processes are relatively uniform. However,there are pronounced differences in the topography between the mountains around the central Hexi Corridor. The East Jintanan Shan, West Jintanan Shan and Heli Shan are located in the northern part of the corridor; and the Yumu Shan in the southern part.Firstly, several representative areas were selected from these mountains to analyze the topographic characteristics, including the uniform valley spacing, local relief, and the outlet number. Secondly, a LEM for these areas was constructed using the Landlab platform, and the landscape evolution was simulated. With uniform valley spacing and other topographic characteristics as the criteria, we compared the realistic and simulated terrain for different model ages. Finally, based on the similarity of the simulated and realistic terrain, we estimated the timing of the initial uplift and the uplift rate of the four mountain ranges. The results are consistent with previous geological and geomorphological records from these youthful stage mountains that have not yet reached a steady state. Our findings demonstrate that LEMs combined with topographic characteristics are a reliable means of constraining the timing of the initial uplift and the uplift rate of the youthful stage mountain. Our approach can potentially be applied to other youthful stage mountains and it may become a valuable tool in tectonic geomorphology research.  相似文献   

3.
Landscape evolution models (LEMs) simulate the geomorphic development of river basins over long time periods and large space scales (100s–1000s of years, 100s of km2). Due to these scales they have been developed with simple steady flow models that enable long time steps (e.g. years) to be modelled, but not shorter term hydrodynamic effects (e.g. the passage of a flood wave). Nonsteady flow models that incorporate these hydrodynamic effects typically require far shorter time steps (seconds or less) and use more expensive numerical solutions hindering their inclusion in LEMs. The recently developed LISFLOOD‐FP simplified 2D flow model addresses this issue by solving a reduced form of the shallow water equations using a very simple numerical scheme, thus generating a significant increase in computational efficiency over previous hydrodynamic methods. This leads to potential convergence of computational cost between LEMs and hydrodynamic models, and presents an opportunity to combine such schemes. This paper outlines how two such models (the LEM CAESAR and the hydrodynamic model LISFLOOD‐FP) were merged to create the new CAESAR‐Lisflood model, and through a series of preliminary tests shows that using a hydrodynamic model to route flow in an LEM affords many advantages. The new model is fast, computationally efficient and has a stronger physical basis than a previous version of the CAESAR model. For the first time it allows hydrodynamic effects (tidal flows, lake filling, alluvial fans blocking valley floor) to be represented in an LEM, as well as producing noticeably different results to steady flow models. This suggests that the simplification of using steady flow in existing LEMs may bias their findings significantly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Landscapes evolve in complex, non‐linear ways over Quaternary timespans. Integrated geomorphological field studies usually yield plausible hypotheses about timing and impact of process activity. Landscape Evolution Models (LEMs) have the potential to test and falsify these landscape evolution hypotheses. Despite this potential, LEMs have mainly been used with hypothetical data and rarely to simulate the evolution of an actual landscape. In this paper, we use a LEM (LAPSUS: LandscApe ProcesS modelling at mUlti dimensions and scaleS) to explore if it is possible to test and falsify conclusions of an earlier field study on 50 ka landscape evolution in Okhombe Valley, KwaZulu Natal, South Africa. In this LEM, five landscape processes interact without supervision: water driven erosion and deposition, creep, solifluction, biological weathering and frost weathering. Calibration matched model results to three types of qualitative fieldwork observations: individual process activity over time, relative process activity over time and net landscape changes over time. Results demonstrate that landscape evolution of the Okhombe valley can be plausibly simulated. A particularly interesting and persistent feature of model results are erosional and depositional phases that lag climatic drivers both by decades, and by several ka within a few hundred meters. The longer lag has not been reported for this spatial scale before and may be an effect of slow landscape‐soil‐vegetation feedbacks. The combined modelling and fieldwork results allow a more complete understanding of these responses to climate change and can fill in hiatuses in the stratigraphical record. Suggestions are made for methodological adaptations for future LEM studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Landscape evolution models (LEMs) simulate the three‐dimensional development of landscapes over time. Different LEMs have different foci, e.g. erosional behaviour, river dynamics, the fluvial domain, hillslopes or a combination. LEM LAPSUS is a relatively simple cellular model operating on timescales of centuries to millennia and using annual timesteps that has had a hillslope focus. Our objective was to incorporate fluvial behaviour in LAPSUS without changing the existing model equations. The model should be able to reproduce alternating aggradation and incision in the floodplains of catchments, depending on simulated conditions. Testing was done using an artificial digital elevation model (DEM) and a demonstration of the ability for fluvial simulation was performed for a real landscape (Torrealvilla catchment, southeast Spain). Model equations to calculate sediment dynamics and water routing were similar for both hillslope and fluvial conditions, but different parameter values were used for these domains, defined based on annual discharge. Parameters changing between the domains are convergence factor p, which is used in the multiple flow algorithm to route water, and discharge and gradient exponents m and n, used in transport capacity calculations. Erodibility and ‘sedimentability’ factors K and P were changed between cold (little vegetation, high erodibility) and warm conditions (more vegetation, lower erodibility). Results show that the adapted parameters reproduced alternating aggradation – due to divergent flow in the floodplain and sediment supply under cold conditions – and incision due to reduced sediment supply and resulting clean water erosion during simulated warm conditions. The simulated results are due to interactions between hillslopes and floodplains, as the former provide the sediments that are deposited in the latter. Similar behaviour was demonstrated when using the real DEM. Sensitivity and resolution analysis showed that the model is sensitive to changes in m, n and p and that model behaviour is influenced by DEM resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Water driven soil erosion is a major cause of land degradation worldwide. Ephemeral gullies (EGs) are considered key contributors to agricultural catchment soil loss. Despite their importance, the parameters and drivers controlling EG dynamics have not been adequately quantified. Here we investigate the effects of rainfall characteristics on EGs, using the physically based landform evolution model (LEM) CAESAR‐Lisflood. An initial goal of this study was to test the feasibility of using a LEM to estimate EG dynamics based on an easily obtainable and moderate spatial resolution (2 × 2 m) Digital Elevation Model (DEM). EG evolution was simulated for two rainfall seasons in a 0.37 km2 agricultural plot situated in a semiarid catchment in central Israel. The 2014 rainfall season was used to calibrate the model and the 2015 season was used for validation. The model overall well predicted the EG network structure and average depth but tended to underestimate the EG length. The effects of rainfall characteristics on EG dynamics were investigated by comparing simulations employing seven rainfall scenarios. Four of these scenarios differ in their overall rainfall volume relative to observed precipitation (+20%, +10%, ?10%, ?20%). The remaining three scenarios vary in the temporal distribution of rainfall during each storm, allowing us to isolate the effect of rainfall intensity on EG evolution. The results show that: (1) EG dynamics strongly correlated with changes in rainfall volume; (2) small‐scale morphological behavior varies between rainfall scenarios, resulting in different meandering and connectivity variability; (3) EG evolution is divided into two main stages, an initial rapid development occurring after the first two weeks of the rainy season, followed by a stable development period; (4) a 12 mm h?1 intensity threshold was observed to initiate and, later, modify EGs; and (5) inner storm rainfall variability can have a considerable effect on EG evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Landscape evolution models (LEMs) have the capability to characterize key aspects of geomorphological and hydrological processes. However, their usefulness is hindered by model equifinality and paucity of available calibration data. Estimating uncertainty in the parameter space and resultant model predictions is rarely achieved as this is computationally intensive and the uncertainties inherent in the observed data are large. Therefore, a limits-of-acceptability (LoA) uncertainty analysis approach was adopted in this study to assess the value of uncertain hydrological and geomorphic data. These were used to constrain simulations of catchment responses and to explore the parameter uncertainty in model predictions. We applied this approach to the River Derwent and Cocker catchments in the UK using a LEM CAESAR-Lisflood. Results show that the model was generally able to produce behavioural simulations within the uncertainty limits of the streamflow. Reliability metrics ranged from 24.4% to 41.2% and captured the high-magnitude low-frequency sediment events. Since different sets of behavioural simulations were found across different parts of the catchment, evaluating LEM performance, in quantifying and assessing both at-a-point behaviour and spatial catchment response, remains a challenge. Our results show that evaluating LEMs within uncertainty analyses framework while taking into account the varying quality of different observations constrains behavioural simulations and parameter distributions and is a step towards a full-ensemble uncertainty evaluation of such models. We believe that this approach will have benefits for reflecting uncertainties in flooding events where channel morphological changes are occurring and various diverse (and yet often sparse) data have been collected over such events.  相似文献   

8.
Limited availability of surface‐based rainfall observations constrains the evaluation of satellite rainfall products over many regions. Observations are also often not available at time scales to allow evaluation of satellite products at their finest resolutions. In the present study, we utilized a 3‐month rainfall data set from an experimental network of eight automatic gauges in Gilgel Abbay watershed in Ethiopia to evaluate the 1‐hourly, 8 × 8‐km Climate Prediction Center morphing technique (CMORPH) rainfall product. The watershed is situated in the Lake Tana basin which is the source of the Blue Nile River. We applied a suite of statistical metrics that included mean difference, bias, standard deviation of differences and measures of association. Our results indicate that the accuracy of the CMORPH product shows a significant variation across the basin area. Its estimates are mostly within ±10 mm h?1 of the gauge rainfall observations; however, the product does not satisfactorily capture the rainfall temporal variability and is poorly correlated (<0.27) to gauge observations. Its poor rain detection capability led to significant underestimation of the seasonal rainfall depth (total bias reaches up to ?52%) with large amounts of hit rain bias as well as missed rain and false rain biases. In the future refinement of CMORPH algorithm, more attention should be given to reducing missed rain bias over the mountains of Gilgel Abbay, whereas equal attention should be given to hit, missed rain and false rain biases over other parts of the watershed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Radar rainfall estimation for flash flood forecasting in small, urban catchments is examined through analyses of radar, rain gage and discharge observations from the 14.3 km2 Dead Run drainage basin in Baltimore County, Maryland. The flash flood forecasting problem pushes the envelope of rainfall estimation to time and space scales that are commensurate with the scales at which the fundamental governing laws of land surface processes are derived. Analyses of radar rainfall estimates are based on volume scan WSR-88D reflectivity observations for 36 storms during the period 2003–2005. Gage-radar analyses show large spatial variability of storm total rainfall over the 14.3 km2 basin for flash flood producing storms. The ability to capture the detailed spatial variation of rainfall for flash flood producing storms by WSR-88D rainfall estimates varies markedly from event to event. As spatial scale decreases from the 14.3 km2 scale of the Dead Run watershed to 1 km2 (and the characteristic time scale of flash flood producing rainfall decreases from 1 h to 15 min) the predictability of flash flood response from WSR-88D rainfall estimates decreases sharply. Storm to storm variability of multiplicative bias in storm total rainfall estimates is a dominant element of the error structure of radar rainfall estimates, and it varies systematically over the warm season and with flood magnitude. Analyses of the 7 July 2004 and 28 June 2005 storms illustrate microphysical and dynamical controls on radar estimation error for extreme flash flood producing storms.  相似文献   

10.
The multisensor precipitation estimates (MPE) data, available in hourly temporal and 4 km × 4 km spatial resolution, are produced by the National Weather Service and mosaicked as a national product known as Stage IV. The MPE products have a significant advantage over rain gauge measurements due to their ability to capture spatial variability of rainfall. However, the advantages are limited by complications related to the indirect nature of remotely sensed precipitation estimates. Previous studies confirm that efforts are required to determine the accuracy of MPE and their associated uncertainties for future use in hydrological and climate studies. So far, various approaches and extensive research have been undertaken to develop an uncertainty model. In this paper, an ensemble generator is presented for MPE products that can be used to evaluate the uncertainty of rainfall estimates. Two different elliptical copula families, namely, Gaussian and t‐copula are used for simulations. The results indicate that using t‐copula may have significant advantages over the well‐known Gaussian copula particularly with respect to extremes. Overall, the model in which t‐copula was used for simulation successfully generated rainfall ensembles with similar characteristics to those of the ground reference measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Landscape evolution models (LEMs) quantitatively simulate processes of sedimentation and erosion on millennial timescales. An important aspect of human impact on erosion is sediment redistribution due to agriculture, referred to herein as tillage erosion. In this study we aim to analyse the potential contribution of tillage erosion to landscape development using LEM LAPSUS. The model is calibrated separately for a water erosion process (i) without tillage and (ii) with tillage. The model is applied to the ~250 km2 Torrealvilla case study catchment, SE Spain. We were able to simulate alternating sequences of incision and aggradation, that are important on longer (millennial) timescales. Generally, model results show that tillage erosion adds to deposition in the lower floodplain area, but neither water erosion alone nor water with tillage erosion together could exactly reproduce the observed amounts of erosion and sedimentation for the case study area. In addition, scale effects are apparent. On hillslopes, tillage may contribute importantly to erosion and may fill local depressions. If assessed on the catchment scale, sediments from tillage erosion eventually reach the lower floodplain area where they contribute to deposition. However, water erosion was observed in the model simulations to be the most important process on the catchment scale. This is the first time that tillage erosion has been explicitly included in a landscape evolution model at a millennial timescale and large catchment scale. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Increasing our understanding of the small scale variability of drop size distributions (DSD), and therefore of several bulk characteristics of rainfall processes, has major implications for our interpretation of the remote sensing based estimates of precipitation and its uncertainty. During the spring and summer of 2002 the authors conducted the DEVEX experiment (disdrometer evaluation experiment) to compare measurements of natural rain made with three different types of disdrometers collocated at the Iowa City Municipal Airport in Iowa City, Iowa in the Midwestern United States. This paper focuses on the evaluation of the instruments rather than analysis of the hydrometeorological aspects of the observed events. The comparison demonstrates discrepancies between instruments. The authors discuss the systematic and random effects in terms of rainfall quantities, drop size distribution properties, and the observed drop size vs. velocity relationships. Since the instruments were collocated, the effects of the natural variability of rain are reduced some with time integration, isolating the instrumental differences. The authors discuss the status of DSD measurement technologies and the implications for a range of hydrologic applications from remote sensing of rainfall to atmospheric deposition to soil erosion and sediment transport in the environment. The data set collected during the DEVEX experiment is made available to the research community.  相似文献   

13.
Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long‐lived and therefore have a long‐term impact on fluvial and landscape evolution. This long‐term impact is still poorly understood and landscape evolution modelling (LEM) can increase our understanding of different aspects of this response. Our objective was to simulate fluvial response to damming, by monitoring sediment redistribution and river profile evolution for a range of geomorphic settings. We used LEM LAPSUS, which calculates runoff erosion and deposition and can deal with non‐spurious sinks, such as dam‐impounded areas. Because fluvial dynamics under detachment‐limited and transport‐limited conditions are different, we mimicked these conditions using low and high erodibility settings, respectively. To compare the relative impact of different dam types, we evaluated five scenarios for each landscape condition: one scenario without a dam and four scenarios with dams of increasing erodibility. Results showed that dam‐related sediment storage persisted at least until 15 000 years for all dam scenarios. Incision and knickpoint retreat occurred faster in the detachment‐limited landscape than in the transport‐limited landscape. Furthermore, in the transport‐limited landscape, knickpoint persistence decreased with increasing dam erodibility. Stream capture occurred only in the transport‐limited landscape due to a persisting floodplain behind the dam and headward erosion of adjacent channels. Changes in sediment yield variation due to stream captures did occur but cannot be distinguished from other changes in variation of sediment yield. Comparison of the model results with field examples indicates that the model reproduces several key phenomena of damming response in both transport‐limited and detachment‐limited landscapes. We conclude that a damming event which occurred 15 000 years ago can influence present‐day sediment yield, profile evolution and stream patterns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Linking landscape morphological complexity and sediment connectivity   总被引:2,自引:0,他引:2  
Connectivity relates to the coupling of landforms (e.g. hillslopes and channels) and the transfer of water and sediment between them. The degree to which parts of a catchment are connected depends largely on the morphological complexity of the catchment's landscape. Landscapes can have very different and distinct morphologies, such as terraces, V‐shaped valleys or broad floodplains. The objective of this study is to better understand and quantify the relation between landscape complexity and catchment connectivity. We hypothesize that connectivity decreases with increasing landscape morphological complexity. To quantify the connectivity–complexity relationship virtual digital elevation models (DEMs) with distinct morphologies were used as inputs into the landscape evolution model LAPSUS to simulate the sediment connectivity of each landscape. Additionally, the hypothesis was tested on six common real DEMs with widely different morphologies. Finally, the effects of different rainfall time series on catchment response were explored. Simulation results confirm the hypothesis and quantify the non‐linear relation. Results from the exploration of sediment connectivity in response to sequences of rainfall events indicate that feedback between erosion and deposition are more important for certain landscape morphologies than for others: for a given rainfall input, a more effective sediment connectivity and erosion response may be expected from rolling or V‐shaped catchments than from dissected or stepped landscapes. Awareness of the differences in the behaviour and response of different morphologies to catchment processes provides valuable information for the effective management of landscapes and ecosystems through efficiently designed soil and water conservation measures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Two rainfall simulators of different plot sizes were used to test whether sediment in runoff could be used to measure aggregate breakdown in the surface of a cracking clay soil under rain. Plots were prepared with either levelled or furrowed surfaces. Samples of the soil surface under rain were taken from furrow ridges or levelled surfaces, and from areas of deposited sediment. These were compared with samples of sediment in runoff taken at the same times. On both furrowed and levelled plot surfaces and for both simulators, aggregate sizes were significantly finer in sediment in runoff than in samples of the soil surface taken with a spatula. No significant differences in surface aggregate size distributions were found between rainfall simulators, or between furrowed and levelled plot surfaces. Regression lines fitted to the data on size distributions of sediment or of aggregates in the soil surface showed no significant changes through time. The fitted lines showed sediment in runoff to be still significantly finer than aggregates in the soil surface after 50 min rain at 95 mm h?1, except for levelled plots under the rotating disc rainfall simulator, where extreme variability of data meant that even relatively large differences were not statistically significant. Size distributions of deposited sediment were similar to those of the surface of adjacent furrow ridges exposed to raindrop impact. This provides evidence that sampling the soil surface with a spatula gives a representative sample of the material available for rain-flow transport.  相似文献   

16.
This paper presents a combined validation method of radar-sensed rainfall, using rain gauge data and hydrologic closure, with an application to the Rio Escondido basin (North-East of Mexico). The space–time scaling behavior of rainfall between rain gauge and radar scales is compared with the intrinsic variability of rainfall, for a statistical validation of space–time variability. For hydrological validation purposes, the CEQUEAU model is used to perform rainfall-runoff routing. It provides a basin-wide water balance, to be compared with the measured water flow at the Villa de Fuentes hydrometric station, for mean-value gauging closure. A good qualitative agreement in terms of hydrograph shape and timing is obtained between the simulated and the observed water flows, and a multiplicative correction factor of an initially proposed Z–R relationship is adopted for the watershed under study, which agrees approximately with other authors’ findings about that relationship. The results are considered particularly useful as a validation-and-correction methodology of radar rainfall estimates for areas sparsely covered by rain gauges.  相似文献   

17.
In semi‐arid Kenya, episodes of agricultural droughts of varying severity and duration occur. The occurrence of these agricultural droughts is associated with seasonal rainfall variability and can be reflected by seasonal soil moisture deficits that significantly affect crop performance and yield. The objective of this study was to stochastically simulate the behaviour of dry and wet spells and rainfall amounts in Iiuni watershed, Kenya. The stochastic behaviour of the longest dry and wet spells (runs) and largest rainfall amounts were simulated using a Markov (order 1) model. There were eight raingauge stations within the watershed. The entire analysis was carried out using probability parameters, i.e. mean, variance, simple and conditional probabilities of dry and rain days. An analysis of variance test (ANOVA ) was used to establish significant differences in rainfall characteristics between the eight stations. An analysis of the number of rain days and rainfall amount per rain day was done on a monthly basis to establish the distribution and reliability of seasonal rainfall. The graphic comparison of simulated cumulative distribution functions (Cdfs) of the longest spells and largest rainfall amounts showed Markovian dependence or persistence. The longest dry spells could extend to 24 days in the long rainy season and 12 in the short rainy season. At 50% (median) probability level, the largest rainfall amounts were 91 mm for the long rainy season and 136 mm for the short rainy season. The short rains were more reliable for crop production than the long rains. The Markov model performed well and gave adequate simulations of the spells and rainfall amounts under semi‐arid conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Landscape evolution models (LEMs) are an increasingly popular resource for geomorphologists as they can operate as virtual laboratories where the implications of hypotheses about processes over human to geological timescales can be visualized at spatial scales from catchments to mountain ranges. Hypothetical studies for idealized landscapes have dominated, although model testing in real landscapes has also been undertaken. So far however, numerical landscape evolution models have rarely been used to aid field‐based reconstructions of the geomorphic evolution of actual landscapes. To help make this use more common, we review numerical landscape evolution models from the point of view of model use in field reconstruction studies. We first give a broad overview of the main assumptions and choices made in many LEMs to help prospective users select models appropriate to their field situation. We then summarize for various timescales which data are typically available and which models are appropriate. Finally, we provide guidance on how to set up a model study as a function of available data and the type of research question. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The infrared‐microwave rainfall algorithm (IMRA) was developed for retrieving spatial rainfall from infrared (IR) brightness temperatures (TBs) of satellite sensors to provide supplementary information to the rainfall field, and to decrease the traditional dependency on limited rain gauge data that are point measurements. In IMRA, a SLOPE technique (ST) was developed for discriminating rain/no‐rain pixels through IR image cloud‐top temperature gradient, and 243K as the IR threshold temperature for minimum detectable rainfall rate. IMRA also allows for the adjustment of rainfall derived from IR‐TB using microwave (MW) TBs. In this study, IMRA rainfall estimates were assessed on hourly and daily basis for different spatial scales (4, 12, 20, and 100 km) using NCEP stage IV gauge‐adjusted radar rainfall data, and daily rain gauge data. IMRA was assessed in terms of the accuracy of the rainfall estimates and the basin streamflow simulated by the hydrologic model, Sacramento soil moisture accounting (SAC‐SMA), driven by the rainfall data. The results show that the ST option of IMRA gave accurate satellite rainfall estimates for both light and heavy rainfall systems while the Hessian technique only gave accurate estimates for the convective systems. At daily time step, there was no improvement in IR‐satellite rainfall estimates adjusted with MW TBs. The basin‐scale streamflow simulated by SAC‐SMA driven by satellite rainfall data was marginally better than when SAC‐SMA was driven by rain gauge data, and was similar to the case using radar data, reflecting the potential applications of satellite rainfall in basin‐scale hydrologic modelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Hortonian runoff was measured from plots with lengths of 1·25 and 12 m, and at watershed level for rainstorms during the 1996 rainy season in cental Côte d'Ivoire, Africa. A clear reduction in runoff coefficients was found with increasing slope lengths, giving order of magnitude differences between runoff measurements at point level (1 m2: 30–50% of total rain) and watershed level (130 ha: 4% of total rain). Runoff reduction from 1·25 and 12 m slopes was reproduced for each major runoff‐producing rainstorm at two different sets of plots, but the reduction was erratic for rainfall events which produced little runoff. In addition, runoff reduction varied wildly from one rainstorm to the next. In the analysis, we show that the spatial variability of runoff parameters causes the erratic behaviour during rainstorms with little runoff. During the more important, larger runoff‐producing events, which give 78% of total runoff, the temporal dynamics of the rainfall–runoff process determine the reduction of runoff coefficients from longer slopes. A simple infiltration/runoff model was used to simulate the field results, thereby confirming the importance of rainfall dynamics as an explanatory factor for measured reduction of runoff coefficients. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号