首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blowouts are the most regionally pervasive active aeolian landform on the northern Great Plains of North America. This study reports a long‐term investigation into the morphological development of two adjacent blowouts in a continental dune field. The blowouts were monitored for a decade in the Bigstick Sand Hills of southwestern Saskatchewan, Canada. Topographic changes were determined from dense arrays of erosion pins in each blowout (1 per 4 m2, n = 171; and 1 per 16 m2, n = 150). Pin measurements were made 16 times between May 1994 and May 2004. Over the decade both blowouts expanded and more than doubled in volume. Differences in form–flow interactions have caused the larger of the two blowouts to deposit more than a metre of sediment within the deflation basin, and the smaller blowout to erode by more than a metre. A negative feedback effect was triggered when the larger blowout reached a critical size around 1994 (60 m × 36 m × 8·1 m, length × width × height) when sediment was no longer eroded from the deflation basin. A positive feedback in the smaller blowout continues to facilitate erosion from the deflation basin. Monthly observations since 2002 indicate that aspect plays an important role in the development of these blowouts by creating a spatial asymmetry in sediment availability. Sediment is more readily available throughout the year on south‐facing slopes, which receive greater insolation than north‐facing slopes and are often drier and more frequently thawed in this cold‐climate environment. Comparisons between climate data from a remote meteorological station 45 km to the southwest and sediment transport indices developed from the erosion pin data produced very few correlations significant at the 95 per cent confidence level. Nevertheless, the signs of the correlation coefficients indicate that sediment erosion and deposition in both blowouts respond similarly to the following climate variables recorded at the remote station: (i) the amount of precipitation, (ii) the transport capacity of the wind and (iii) transporting winds from a directional wedge between 180 and 330°. Taken altogether, the results from this study highlight the importance of climate and feedback effects in blowout development that may be extended to other blowouts in continental and coastal settings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
On the west side of the military road to Tibet in the Kunlun Shan, a major body of diamicton is moving slowly downslope from the ridge crest at 4800 m in a northerly and easterly direction. The material is derived from Middle Pleistocene till deposits and the underlying Pliocene alluvial gravels. More than 10 per cent of the material is composed of boulders longer than 2 m, 45 per cent has long axes between 0·5 and 2 m, while the matrix is a poorly sorted sandy loam. The mean annual air temperature is −7°C to −5°C and the mean annual precipitation is under 300 mm a−1. The diamicton lacks a vegetation cover, in contrast to meadow tundra on the surrounding slopes. The diamicton mantles the north slope of the ridge, but splits into at least 16 separate tongues which are moving down fluvially graded valleys. The average slope of the landform is about 19°, while the mean slope of the fronts of the tongues is 21°. With one exception, the slope of the fronts does not exceed 25°, unlike true rock glaciers. The diamicton is up to 40 m thick in valley 4. The active layer was 12 to 30 cm deep in July at 4780 m, increasing to 1·5 to 2 m at about 4650 m. Ice contents in the permafrost may reach 57 per cent but 30 per cent is more usual The larger boulders act as braking blocks on the upper slopes of the landform and are frozen into the permafrost. The lower parts of the landform move at under 3 cm a−1, whereas the fine-grained material in the active layer moves past the braking blocks on the upper slopes at up to 30 cm a −1. There is no direct evidence for flowage of the icy diamicton forming the deposit. It is therefore best referred to as a gelifluction slope deposit, and is the longest and most spectacular of such deposits described so far in the world. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
A number of studies have measured and numerically modelled near surface wind velocity over a range of aeolian landforms and made suppositions about topographic change and landform evolution. However, the precise measurement and correlation of flow dynamics and resulting topographic change have not yet been fully realized. Here, using repeated high-resolution terrestrial laser scanning and numerical flow modelling within a bowl blowout, we statistically analyse the relationship between wind speed, vertical wind velocity, turbulent kinetic energy and topographic change over a 33-day period. Topographic results showed that erosion and deposition occurred in distinct regions within the blowout. Deposition occurred in the upwind third of the deflation basin, where wind flow became separated and velocity and turbulent kinetic energy decreased, and erosion occurred in the downwind third of the deflation basin, where wind flow reattached and aligned with incident wind direction. Statistical analysis of wind flow and topographic change indicated that wind speed had a strong correlation with overall topographic change and that vertical wind velocity (including both positive and negative) displayed a strong correlation with negative topographic change (erosion). Only weak or very weak correlations exist for wind flow parameters and positive topographic change (accretion). This study demonstrates that wind flow modelling using average incident wind conditions can be utilized successfully to identify regions of overall change and erosion for a complex aeolian landform, but not to identify and predict regions where solely accretion will occur. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Among the numerous environmental factors affecting plant communities in alpine ecosystems, the influence of geomorphic processes and landforms has been minimally investigated. Subjected to persistent climate warming, it is vital to understand how these factors affect vegetation properties. Here, we studied 72 vegetation plots across three sites located in the Western Swiss Alps, characterized by high geomorphological variability and plant diversity. For each plot, vascular plant species were inventoried and ground surface temperature, soil moisture, topographic variables, earth surface processes (ESPs) and landform morphodynamics were assessed. The relationships between plant communities and environmental variables were analysed using non-metric multi-dimensional scaling (NMDS) and multivariate regression techniques (generalized linear model, GLM, and generalized additive model, GAM). Landform morphodynamics, growing degree days (sum of degree days above 5°C) and mean ground surface temperature were the most important explanatory variables of plant community composition. Furthermore, the regression models for species cover and species richness were significantly improved by adding a morphodynamics variable. This study provides complementary support that landform morphodynamics is a key factor, combined with growing degree days, to explain alpine plant distribution and community composition. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

5.
With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investig  相似文献   

6.
Blowouts are wind-eroded landforms that are widely distributed in the north-eastern part in Qinghai–Tibet Plateau (QTP), China. These blowouts are thought to form in response to climate change and/or human activity but little is known about their morphodynamics. Using field surveys, remote sensing and geographic information system (GIS) spatial analysis, the distribution and morphology of blowouts are analysed and their initiation considered. Results show the QTP mega-blowouts are some of the largest in the world. The orientations of the trough shaped blowouts are parallel with the prevailing wind, but the saucer and bowl-shaped blowouts are influenced by bi-directional transport. Whilst regional patterns of blowout shape and size were observed to reflect the extent of aeolian sediments and wind regimes, the relationship between the different morphological parameters showed consistency. During initial stages of development, the length to width ratios of blowouts increase rapidly with area but after they reach a mega size this relationship stabilizes as blowouts widen. Initial luminescence dating shows that blowouts appear to have initiated ~100 to 500 years ago, coinciding with the Little Ice Age (LIA) climate event when northwest winds are known to have intensified. Further work is required to confirm this initiation period and establish the significance of mega blowouts for landscape degradation and human activities. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
王恒  杨振宇 《地球物理学报》2019,62(5):1789-1808
印度—欧亚板块碰撞以来青藏高原内部及其周缘地区经历了复杂的构造演化,复杂构造变形区的复合构造使得古地磁的数据解释究竟代表区域的构造旋转还是只能反映局部的构造变形一直是备受关注的问题.本文通过采集川滇地块西缘渔泡江断裂东侧三岔河地区白垩纪红层古地磁样品,揭示采样区差异性旋转并探讨川滇地块西部自中新世以来的构造演化规律.前人的地质调查表明川滇地块渔泡江断裂东侧上白垩统赵家店组地层发育倾伏褶皱.三岔河剖面以三岔河镇为界分为南北两段,三岔河南段剖面高温剩磁分量平均方向在倾斜校正后Ds=29.3°,Is=45.7°,ks=54.3,α95=6.6°,倾伏地层产状校正后Ds=30.6°,Is=46.6°,ks=69.3,α95=5.8°;而三岔河北侧剖面高温剩磁分量平均方向在倾斜校正后Ds=350.4°,Is=42.1°,ks=69.4,α95=9.2°,倾伏地层产状校正后Ds=347.4°,Is=41.9°,ks=96.6,α95=7.8°;两组高温剩磁分量均通过了褶皱检验,表明其获得于褶皱形成之前.相对于东亚稳定区80Ma古地磁极,三岔河南侧剖面发生了20.5°±4.8°的顺时针构造旋转量,与楚雄盆地核部之间不存在差异性旋转;但三岔河镇以北剖面却发生了22.7°±6.6°的逆时针旋转.综合分析川滇地块内部的古地磁数据表明自中新世以来川滇地块南部楚雄盆地经历了约20°的顺时针构造旋转,而三岔河镇北侧经历了约20°逆时针旋转.进一步分析表明三岔河北侧剖面相对于南侧剖面经历了约40°的逆时针旋转,可能由于研究区的滑脱构造导致岩石薄弱层拆离滑脱所引起.  相似文献   

8.
The Hulunbuir dune field (HLB) is situated near the northern limit of the East Asian summer monsoon (EASM), and vulnerable to climate change. The aeolian sand–paleosol sequences of this region are crucial for understanding the past landform processes in response to climate change, but not yet understood well due to chronological controversies. Here, we presented 20 optically stimulated luminescence (OSL) ages from five aeolian sand–paleosol profiles in the HLB, and reconstructed the aeolian landform processes since 18 ka. The findings of this study suggested that the HLB was probably dominated by mobile dunes before 18 ka, as 10 out of 11 aeolian samples were dated to 18–12 ka. Two strong sandy paleosol layers were found and dated to ∼9 ka and 5–0.5 ka, indicating that strong in situ pedogenic process on the accumulative sand could occur during the Holocene. The OSL ages of samples near the top of three profiles were >9.5 ka, indicating two possible surface processes. First, the land surface was stable since 9.5 ka after stabilization, with no accumulation or erosion. Alternatively, the surface could have been erosive with the eroded sediments feeding downwind active dunes. The latter explanation is consistent with the current local landforms, which has widespread blowout pits, indicators of strong wind erosion. We emphasized that the OSL age of a sand layer sample in fossil dunes implied the onset of mobile dune stabilization, not the age of dune activity, as previously stated.  相似文献   

9.
The hill range of Vaivara Sinimäed in northeast Estonia consists of several narrow east- to northeast-trending glaciotectonic fold structures. The folds include tilted (dips 4–75°) Middle Ordovician (early Darriwilian) layered carbonate strata that were studied by mineralogical, palaeomagnetic, and rock magnetic methods in order to specify the postsedimentational history of the area and to obtain a better control over the palaeogeographic position of Baltica during the Ordovician. Mineralogical studies revealed that (titano)magnetite, hematite, and goethite are carriers of magnetization. Based on data from 5 sites that positively passed a DC tilt test, a south-easterly downward directed component A (Dref = 154.6°± 15.3°, Iref = 60.9°± 9.7°) was identified. The component is carried by (titano)magnetite, dates to the Middle Ordovician (Plat = 17.9°, Plon = 47.3°, K = 46.7, A95 = 11.3°), and places Baltica at mid-southerly latitudes. Observations suggest that in sites that do not pass the tilt test, the glaciotectonic event has caused some rotation of blocks around their vertical axis.  相似文献   

10.
Research indicates that the aeolianite (Kurkar) cliffs along the Israeli Mediterranean coastline have continuously retreated eastward during the last few decades. There seems to be no dispute among Earth scientists regarding the general trend of cliff retreat. However the majority of papers displaying cliff retreat rates are based upon comparison of aerial photographs. Their lack of advanced geometric measurement methods causes a high margin of error. Public attention is focused upon the Beit‐Yannay coastal cliff since private homes are located along the southern section of the cliff crest. The current research compares the historic location of the cliff crest edge at Beit‐Yannay as observed in a series of aerial photographs taken during the period 1918–2000. Quantitative measurement methods included applications of satellite geodesy and digital photogrammetry and mapping. Research results offer quantitative, consecutive and highly accurate data regarding retreat rates over a relatively long period of 82 years. It is concluded that: 1. Annual average cliff retreat rates of the cliff crest is 20 cm/year. 2. Categorization of the study time span reveals periods displaying varying retreat rates such as 27 cm/year during 1918–1946, 21 cm/year during 1946–1973 and 10 cm/year during 1973–2000. 3. Maximum retreat distances of the cliff crest, over the study period were found to be approximately 25 m along the northern, lowest section of the cliff. Minimum distances of 11 m were identi?ed at the highest, southern section of the cliff. 4. The eolianite (Kurkar) cliffs along the Israeli Mediterranean coast throughout the 20th century have been an important source of sediment, contributing approximately 24 × 106 m3 of sediments to the sediment balance of Israeli beaches. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Barchan dunes are common on Earth, Mars and Titan. Previous studies have shown that their formation, migration and evolution are influenced by the wind regime and other factors, but details vary among regions. Understanding barchan morphology and migration will both improve our understanding of dune geomorphology and provide a basis for describing the environmental conditions that affect the formation and development of these dunes on Earth and other planets. Here, we provide detailed measurements of barchan dune migration in China's Quruq Desert, in the lower reaches of the Tarim River. We monitored their migration direction and rate, and their morphological changes during migration, by comparing Google Earth images acquired in 2003 and 2014. The dunes migrated west-southwest, close to the local resultant drift direction. The migration rate averaged 8.9 to 32.1 m year−1, with obvious spatial variation. In addition to the wind regime, the migration rate depended on dune morphology, density and vegetation cover; the rate was negatively related to dune height, density and vegetation cover, but positively linearly related to the length/width ratio (LU/W) and to the decrease in this ratio from 2003 to 2014. We found correlations among the dune morphometric parameters, but the relationships were weaker than in previous research. Due to the complexity of the factors that affect the processes that underlie sand dune development and migration, the morphological changes during dune migration were also complex. Our measurements suggest that the aeolian environment played a dominant role in dune migration and its spatial variation in the Quruq Desert. These results will support efforts to control dune migration in the western Quruq Desert and improve our understanding of dune morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Karst aquifers are well known for their intricate stratigraphy and geologic structures, which make groundwater characterization challenging because flowpaths and recharge sources are complex and difficult to evaluate. Geochemical data, collected from ten closely spaced production wells constructed in two karst aquifers (Bangor Limestone (Mb) and Tuscumbia Limestone/Fort Payne Chert (Mftp)) in Trussville, north‐central Alabama, illustrate two distinctive groundwater end‐members: (1) higher major ion, dissolved inorganic carbon, conductivity, alkalinity concentrations, heavier δ13C ratios (max: −10.2 ± 0.2‰ Vienna Pee Dee Belemnite (PDB)) and lower residence times (mean: 19.5 ± 2 years, n = 2) of groundwater in the Mb aquifer and (2) lower constituent concentrations, lighter δ13C ratios (min: −13.4 ± 0.2‰ PDB) and longer residence times of groundwater (mean: 23.6 ± 2 years, n = 4) in the Mftp aquifer. Summer and fall data and the binary mixing model show aquifer inter‐flow mixing along solution fractures and confirms the distinctive groundwater geochemistry of the two aquifers. Lowering of static water levels over the summer (drawdown from 2 to 5.2 m) leads to more reducing groundwater conditions (lower Eh values) and slightly enriched δ18O and δD ratios during the fall [δ18O: −4.8 ± 0.1 to −5.4 ± 0.1‰ Vienna Standard Mean Oceanic Water (VSMOW), n = 9; δD: −25.4 ± 1 to −27.4 ± 1‰ VSMOW, n = 9] when compared with summer season samples (δ18O: −5.1 ± 0.1 to −5.7 ± 0.1‰ VSMOW, n = 11; δD: −25.0 ± 1 to −30.6 ± 1‰ VSMOW, n = 11). GIS analyses confirm the localized origin of recharge to the investigated aquifers. The combination of GIS, field parameters and geochemistry analyses can be successfully used to identify recharge sources, evaluate groundwater flow and transport pathways and to improve understanding of how groundwater withdrawals impact the sustainability and susceptibility to contamination of karst aquifers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This article presents a simple physical concept of aeolian dust accumulation, based on the behaviour of the subprocesses of dust deposition and dust erosion. The concept is tested in an aeolian dust wind tunnel. The agreement between the accumulation curve predicted by the model and the accumulation curve obtained in the experiments is close to perfect and shows that it is necessary to discriminate between the processes of aeolian dust deposition and aeolian dust accumulation. Two important thresholds determine the accumulation process. For wind speeds below the deflation threshold, the aeolian accumulation of dust increases linearly with the wind speed. For wind velocities between the deflation threshold and the accumulation limit, the sedimentation balance is above unity and there is still accumulation, though it rapidly drops once the deflation threshold has been exceeded. At wind speeds beyond the accumulation limit, the sedimentation balance is below unity and there will no longer be an accumulation of dust. The thresholds have been determined in a wind tunnel test at friction velocity u* = 0·34 m s?1 (deflation threshold) and u* = 0·43 m s?1 (accumulation limit), but these values are only indicative since they depend heavily on the characteristics of the accumulation surface and of the airborne grains. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A system of aligned vertical fractures produces azimuthal variations in stacking velocity and amplitude variation with offset, characteristics often reported in seismic reflection data for hydrocarbon exploration. Studies of associated attenuation anisotropy have been mostly theoretical, laboratory or vertical seismic profiling based. We used an 11 common‐midpoint‐long portion of each of four marine surface‐seismic reflection profiles, intersecting each other at 45° within circa 100 m of a common location, to measure the azimuthal variation of effective attenuation, Q−1eff and stacking velocity, in a shallow interval, about 100 m thick, in which consistently orientated vertical fracturing was expected due to an underlying salt diapirism. We found qualitative and quantitative consistency between the azimuthal variation in the attenuation and stacking velocity, and published amplitude variation with offset results. The 135° azimuth line showed the least apparent attenuation (1000 Q−1eff= 16 ± 7) and the fastest stacking velocity, hence we infer it to be closest to the fracture trend: the orthogonal 45° line showed the most apparent attenuation (1000Q−1eff= 52 ± 15) and slowest stacking velocity. The variation of Q−1eff with azimuth φ is well fitted by 1000Q−1eff = 34 − 18cos[2(φ+40°)] giving a fracture direction of 140 ± 23° (±1SD, derived from ‘bootstrapping’ fits to all 114 combinations of individual common‐midpoint/azimuth measurements), compared to 134 ± 47° from published amplitude variation with offset data. The effects of short‐window spectral estimation and choices of spectral ratio bandwidth and offset ranges used in attenuation analysis, individually give uncertainties of up to ±13° in fracture direction. This magnitude of azimuthal variation can be produced by credible crack geometries (e.g., dry cracks, radius 6.5 m, aspect ratio 3 × 10−5, crack density 0.2) but we do not claim these to be the actual properties of the interval studied, because of the lack of well control (and its consequences for the choice of theoretical model and host rock physical properties) and the small number of azimuths available here.  相似文献   

15.
The textures of chondrules have been reproduced by crystallizing melts of three different compositions at 1 atm with cooling rates ranging from 400 to 20°C/min under 10?9 to 10?12 atmPO2. A porphyritic olivine texture has been formed from a melt of olivine-rich composition (SiO2 = 45 wt.%), a barred-olivine texture from melt of intermediate composition (SiO2 = 47 wt.%), and radial-olivine texture from melt of pyroxene-rich composition (SiO2 = 57 wt.%). The cooling rate for producing barred olivine is most restricted; the rate ranges from 120 to 50°C/min. Other textures can be formed with wider ranges of cooling rate. The results of the experiments indicate that some of the major types of textures of chondrules can be formed with cooling rate of about 100°C/min. With this cooling rate, the texture varies depending on the composition of melt.  相似文献   

16.
Airflow patterns through a saucer blowout are examined from wind speed and direction measurements made during a chinook wind event. The blowout long‐axis is oriented east–west with a broad depositional apron on the east side. Wind directions during the event rotated from south‐westerly to westerly, permitting an assessment of oblique and axis‐parallel flows. Results show that airflow passing over the windward rim of the saucer blowout expands and decelerates, leading to flow separation and a small re‐circulation zone on sheltered lee slopes. Near the deflation basin, airflow re‐attaches to the blowout surface and accelerates up to a small opening in the east rim, where it can be up to 50% faster than on the windward edge. Beyond the downwind rim the airflow expands and decelerates and sand is deposited onto a broad apron. Similar to coastal trough blowouts, the degree of airflow steering and acceleration along the deflation basin is determined by the angle of incidence between the approach wind and the long‐axis of the blowout. As the angle of incidence increases wind speed accelerates at 0·3 m above the surface of the deflation basin and the degree of airflow steering increases. Overall, a two‐fold process is identified, where south‐westerly flows have greater potential for eroding the deflation basin, while westerly flows have greater potential for evacuating sand from within the blowout. Visual observations indicate that sand eroded from the deflation basin during south‐westerly flows is re‐distributed to adjacent zones of low wind speed until axis‐parallel winds evacuate the sand through the opening in the east rim. Morphometric changes since 1994 indicate that the blowout morphology has remained relatively constant, suggesting a persistent interplay between oblique and axis‐parallel wind erosion events. Collectively, these findings indicate that the angle of approach winds is an important control on saucer blowout morphodynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Computer simulations of the topographic evolution of the proposed post‐mining rehabilitated landform for the ERA Ranger Mine, showed that for the unvegetated and unripped case, the landform at 1000 years would be dissected by localized erosion valleys (maximum depth = 7·6 m) with fans (maximum depth = 14·8 m) at the outlet of the valleys. Valley form simulated by SIBERIA has been recognized in nature. This indicates that SIBERIA models natural processes efficiently. For the vegetated and ripped case, reduced valley development (maximum 1000 year depth = 2·4m) and deposition (maximum 1000 year depth = 4·8m) occurred in similar locations as for the unvegetated and unripped case (i.e. on steep batter slopes and in the central depression areas of the landform). For the vegetated and ripped condition, simulated maximum valley depth in the capping over the tailings containment structure was c. 2·2 m. By modelling valley incision, decisions can be made on the depth of tailings cover required to prevent tailings from being exposed to the environment within a certain time frame. A reduction in thickness of 1 m of capping material over tailings equates to c. 1 000 000 Mm3 over a 1 km2 tailings dam area. This represents a saving of c. $1 500 000 in earthworks alone. Incorporation of SIBERIA simulations in the design process may result in cost reduction while improving confidence in environmental protection mechanisms. Copyright 2000 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.  相似文献   

18.
Sea cliff morphology and erosion rates are modulated by several factors, including rock control that reflects both lithology and rock structure. Erosion is anticipated to preferentially exploit ‘fractures’, broadly meant as any discontinuity in an otherwise continuous medium, where the rock mass is weakest. Unpicking the direct control of such fractures on the spatial and temporal pattern of erosion remains, however, challenging. To analyse how such fractures control erosion, we monitored the evolution of a 400 m-long stretch of highly structured sedimentary cliffs in Socoa, Basque Country, France. The rock is known as the Socoa flysch formation. This formation combines decimetre-thick turbidites composed of repeat triplets of medium to strong calcareous sandstone, laminated siltstones and argillaceous marls. The sequence plunges at 45° into the sea with a shore-parallel strike. The cliffs are cross-cut by two normal and reverse fault families, with 10–100 m alongshore spacing, with primary and secondary strata-bound fractures perpendicular to the bedding, which combined delimit the cliff rock mass into discrete blocks that are exploited by the erosion process. Erosion, and sometimes plucking, of such beds and blocks on the cliff face was monitored using ground-based structure-from-motion (SfM) photogrammetry, over the course of 5.7 years between 2011 and 2017. To compare with longer time change, cliff-top retreat rate was assessed using SfM-orthorectified archive aerial photographs spanning 1954–2008. We show that the 13,250 m2 cliff face released 4500 blocks exceeding 1.45 × 10−3 m3, removing a total volume of 170 m3. This equates to an average cliff erosion rate of 3.4 mm/year, which is slightly slower than the 54-year-long local cliff-top retreat (10.8 ± 1.8 mm/year). The vertical distribution of erosion reflects the height of sea water inundation, where the maximum erosion intensity occurs ca. 2 m above high spring-tide water level. Alongshore, the distribution of rockfall scars is concentrated along bed edges bounding cross-cutting faults; the extent of block detachment is controlled by secondary tectonic joints, which may extend through several beds locally sharing similar mechanical strength; and rockfall depth is always a multiple of bed thickness. Over the longer term, we explain block detachment and resultant cliff collapse as a cycle. Erosion nucleates on readily exploitable fractures but elsewhere, the sea only meets defect-free medium-strong to strong rock slabs offering few morphological features for exploitation. Structurally delimited blocks are quarried, and with sufficient time, carve semi-elliptic scars reaching progressively deeper strata to be eroded. Lateral propagation of erosion is directed along mechanical weaknesses in the bedding, and large episodic collapses affect the overhanging slabs via sliding on the weak marl beds. Collapse geometry is confined to one or several triplets of turbidite beds, but never reaches deeper into the cliff than the eroded depth at the foot. We contend that this fracture-limited model of sea-cliff erosion, inferred from the Socoa site dynamics and its peculiar sets of fractures, applies more broadly to other fractured cliff contexts, albeit with site-specific geometries. The initiation of erosion, the propagation of incremental block release and the ultimate full failure of the cliff, have each been shown to be fundamentally directly controlled by structure, which remains a vital control in understanding how cliffed coasts have changed in the past and will change in the future.  相似文献   

19.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   

20.
The near-bottom sedimentation rates were measured by placing cylindrical sediment traps 10 m above the sea floor on each of six moorings deployed between 4100 and 5100 m along a transect across an energetic deep-sea current in the HEBBLE area centered at 40°N, 63°W on the Nova Scotian Rise. Sedimentation rates above the sea floor were monitored with additional traps at 23, 54, 100, 200 and 500 m above the bottom (mab) on the mooring at 4950 m. The total flux at 500 mab for the two-week period, consisting mostly of primary particles from surface water, was 166 mg/m2 day and increased exponentially towards the bottom. The total flux at 10 mab increased down slope from 1160 mg/m2 day at 4158 m where the mean current speed was 8 cm/s to a maximum of 77,300 mg/m2 day at 5022 m where the mean current speed was 32 cm/s, then decreased to 59,400 mg/m2 day at the mooring at 5076 m. The size frequency distributions of large, discrete particles such as foraminifera, diatoms, radiolarians and fecal pellets were quantified in all trap samples to examine whether the large variation in fluxes was due to artifacts such as current velocity or trap tilt. Based on the source, persistence and distribution of these particles, we conclude that the large variations in fluxes across the rise and with distance from the sea floor are due primarily to resuspension and resettling of bottom sediments, with tilt and current effects on trapping having only a secondary effect. The vertical gradients of large-particle fluxes suggest effective vertical eddy diffusivities of 102–104 cm2/s using a two-dimensional model. Horizontal advection and secondary circulation probably play a large role in moving large, rapidly falling (up to 1 cm/s) particles to a height of 50–100 m above the sea floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号