首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
This paper presents the history of badland generated in the Saldaña region, Spain; as well as the main responses eight decades after the start of restoration – in terms of vegetation, soil and erosive processes. The restoration consisted of intense reforestation and construction of more than 100 check dams and numerous wattle fences. Presently, the dense vegetation (87% cover) contrasts markedly with the degraded landscape from the early 20th century (5% cover). The thickness of litter and the natural presence of some species (Quercus pyrenaica, Paeonia broteroi and Lactarius deliciosus) clearly indicate the recovery of the site. The development of the forest cover shows that the intervention has the potential to recover almost 90% of the area. There is also evidence of soil regeneration, although some properties (erodibility, resistance to penetration and shear‐strength resistance) are not that different between the forested and degraded areas. In the restored zones, runoff is negligible, since a thick layer of moss covers the spillways of all the check dams. Erosion has almost been stopped by the effects of vegetation cover, litter and higher infiltration rates (infiltration rate in forested slopes is 43.4 times greater than in bare slopes). Sediment detachment, such as landslides, mudflows and piping, still occur, but are restricted to the degraded zones. Furthermore, even when sediments are mobilized from the upper degraded hillslopes during the larger storms events (2000–2010), check dams and the lower elevation restored forest‐buffers effectively work to reduce the sediment yield into the Carrión River by almost three orders of magnitude (<102 mg L‐1), compared with data from the 1930s and 1940s (>105 mg L‐1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

Infiltration plays a fundamental role in streamflow, groundwater recharge, subsurface flow, and surface and subsurface water quality and quantity. In this study, adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and random forest (RF) models were used to determine cumulative infiltration and infiltration rate in arid areas in Iran. The input data were sand, clay, silt, density of soil and soil moisture, while the output data were cumulative infiltration and infiltration rate, the latter measured using a double-ring infiltrometer at 16 locations. The results show that SVM with radial basis kernel function better estimated cumulative infiltration (RMSE = 0.2791 cm) compared to the other models. Also, SVM with M4 radial basis kernel function better estimated the infiltration rate (RMSE = 0.0633 cm/h) than the ANFIS and RF models. Thus, SVM was found to be the most suitable model for modelling infiltration in the study area.  相似文献   

3.
Water infiltration rate and hydraulic conductivity in vegetated soil are two vital hydrological parameters for agriculturists to determine availability of soil moisture for assessing crop growths and yields, and also for engineers to carry out stability calculations of vegetated slopes. However, any effects of roots on these two parameters are not well‐understood. This study aims to quantify the effects of a grass species, Cynodon dactylon, and a tree species, Schefflera heptaphylla, on infiltration rate and hydraulic conductivity in relation to their root characteristics and suction responses. The two selected species are commonly used for ecological restoration and rehabilitation in many parts of the world and South China, respectively. A series of in‐situ double‐ring infiltration tests was conducted during a wet summer, while the responses of soil suction were monitored by tensiometers. When compared to bare soil, the vegetated soil has lower infiltration rate and hydraulic conductivity. This results in at least 50% higher suction retained in the vegetated soil. It is revealed that the effects of root‐water uptake by the selected species on suction were insignificant because of the small evapotranspiration (<0.2 mm) when the tests were conducted under the wet climate. There appears to have no significant difference (less than 10%) of infiltration rates, hydraulic conductivity and suction retained between the grass‐covered and the tree‐covered soil. However, the grass and tree species having deeper root depth and greater Root Area Index (RAI) retained higher suction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In arid region, direct infiltration from rainfall contributes little to groundwater compared with localized recharge from streams. How to quantify riverbed infiltration to groundwater systems is an important area of research in hydrology. In this study, saturated permeability coefficient of a riverbed in an arid inland river basin located in the northwest of China was obtained by Guelph Permeameter and laboratory analysis methods. The characteristics of riverbed infiltration and its spatial patterns were analysed using geostatistical method and kriging method. The results showed that the saturated permeability coefficient varied from 0.089 to 2.802 m/d, indicating moderate degree of variability. The Guelph Permeameter and laboratory test methods provided consistent estimates of saturated permeability coefficient. There was a strong spatial correlation for Kfs of the riverbed in this study area when Range (A) was less than 0.276°, suggesting that the maximum sampling distance for saturated permeability coefficient of the riverbed was 0.276° under isotropic conditions. The Kfs near the centre of the riverbed was higher than the value near riverbank. The Kfs values decreased in the direction of upstream to downstream in the Heihe River Basin. The riverbed mechanical composition, initial soil water content and bulk density have significant influence up on the riverbed infiltration. Besides, the topographical factors including the width, altitude and distance factors of the riverbed together impacted the riverbed infiltration and the slope of the riverbed and also influenced the riverbed infiltration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

An innovative methodology that combines an indirect physiography-based method for determining the runoff coefficient at a sub-basin scale and a water balance model applied on a daily time scale was developed to calculate the natural groundwater recharge in three watersheds within the Oum Zessar arid area, Tunisia. The effective infiltration was calculated as part of the water surplus by considering the average available water content (AWC) of soil and an average runoff coefficient for each sub-basin. The model indicates that the sub-basins covered mainly by the “artificial” soils of tabias and jessour, characterized by average AWC values greater than 150 mm, did not contribute to natural groundwater recharge over the 10-year period (2003–2012) considered. The estimated volume for the Triassic aquifer amounted to about 4.5 hm3 year?1, which is consistent with previous studies. For the Jurassic and Cretaceous aquifers, the estimated volumes amounted to about 200 dm3 year?1.  相似文献   

6.
Artificial recharge is a practical tool available for increasing the groundwater storage capacity. The efficiency of artificial recharge is related to various hydrogeological factors of the target area. In this study, a variable saturated groundwater flow model, FEMWATER, was used to evaluate the arrival times of recharged water that infiltrates from an artificial recharge pond to the groundwater table under various hydrogeological conditions. Forty-five arrival times were generated by FEMWATER. The relationships between the arrival times and hydrogeological factors used in the simulation of FEMWATER were analyzed by the grey correlation method. The results show the order of importance of the factors as they influence the arrival time. In order from high to low importance, they are α, D g, θ e, D p, K S and β. D g and D p are interpreted as the potential for movement of the recharge water; θe is the water storage capacity of soil, and K S represents the ability of soil to transport water. α and β describe the characteristic curve of the unsaturated soil. The method was applied to evaluate a suitable site for artificial recharge in the Yun-Lin area. Grey correlation analysis was performed to obtain the grey correlation grade using the minimum arrival time as a reference sequence. An index is proposed herein to determine the recharge efficiency of 20 sampling sites. A contour mapping of index values at the 20 sampling sites identified three areas for artificial aquifer recharge in Yun-Lin. Area A in the upper plain is considered more appropriate for groundwater recharge than areas B and C in the coast.  相似文献   

7.
Interactions between groundwater mounds caused by a geologic layer contrast affect the efficiency of managed aquifer recharge in arid areas. However, research has rarely examined the roles of groundwater mounding size variations on soil water dynamics in a stratified vadose zone in response to a sustained infiltration source. Numerical experiments were conducted on a two-dimensional vertical-section domain using HYDRUS software to simulate the behaviours of two adjacent (upper and lower) groundwater mounds underlying an infiltration basin subjected to clay loam and sandy alternately-layered soil profiles. The model successfully predicted the volume and extent of perched water and approximated vertical travel times during events generating downward fluxes from the surface injection. The response time of the mounding width (lateral extension) to the surface injection was delayed as compared to that of the mounding height (vertical extension), especially for the lower water mound. The mounding heights and widths show a strongly positive correlation with the infiltration rates of both high- and low-permeability layers where the injected water mounded, while the water storage amounts in the high- and low-permeability layers were governed by the mounding height and width, respectively. Exploratory simulations were then employed to assess the dependence of groundwater mounding behaviours and recharge performances on surface injection strategies. Results suggest that, by reducing injection rate or shortening injection duration, the near-term fraction of the surface injection converted to deep recharge is likely to be increased due to the narrowed groundwater mounding size, which would be limited by the water-retarding effect of layer contrasts. This study has important implications for predicting and understanding multilayered groundwater mounding behaviours and associated water mass balance under the geologic stratification, and is expected to aid in optimizing the infiltration basin operation for aquifer recharge.  相似文献   

8.
《水文科学杂志》2013,58(2):338-351
Abstract

A drain spacing formula is derived considering the variation in radial flux and the area above the drain level in the radial flow zone. The extent of the radial flow zone is ascertained by applying a mass balance and differentiability criterion of the water surface profile at the interface of radial and Dupuit-Forchheimer flow zones. The radial flow zone extends from the centre of the tile drain a distance of 2/π times the depth to impervious layer below the drain. For a normal ratio of recharge rate to hydraulic conductivity (R/K ≤ 0.0025), the water surface profile in the radial flow zone computed using Hooghoudt's formula is very different from the profile obtained by the new drain spacing formula; however, Hooghoudt's formula computes the maximum water table height which marginally differs from that found by the present method. For a ratio of high recharge rate to hydraulic conductivity (R/K = 0.1) and close drain spacing (L/D = 2), the difference in the maximum heights is 21%. Hooghoudt's formula overestimates the maximum water table position for L/D < 40. Unlike Hooghoudt's equivalent depth, the equivalent depth obtained using the present method is a function of the ratio of recharge rate to hydraulic conductivity.  相似文献   

9.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Surface infiltration and internal drainage properties of five soil types from arid drylands of South Africa were studied under double ring infiltrometer, rainfall simulation plots (1 m2) and instantaneous drainage plots (9 m2). Changes in soil water content during 40 minute rainfall simulation for a rainstorm with average intensity of 1.61 mm min?1 and 30 day drainage period were measured at various depths by 1.5 m long capacitance soil water measuring (DFM) probe. Different (P < 0.05) mean surface steady infiltration rate ranged from 0.05 to 4.47 mm min?1 and had a negative power relationship (R 2 = 0.65) with horizon clay plus fine silt content. Power regression (R 2 ≥ 86%) described rainstorm infiltration and obtained steady rates within an average time of 15 minutes. Mean total infiltrated soil water content was lowest (P < 0.05) from surface horizons with either 47.7% clay plus fine silt content or bulk density of 1.91 g cm?3 and exchangeable sodium of not less than 44 mg kg?1. Surface horizons with lower surface bulk density and total sand fraction of more than 72% had infiltrated depth and mean total infiltrated soil water content up to 40 cm deeper and 0.55 mm mm?1 greater, respectively. Drainage rate at drained upper limit calculated from the Wilcox drainage model (R 2 ≤ 0.97%) was 0.2 mm day?1 or less were from underlying horizons with either clay plus fine silt of 45% or soft calcium carbonate. Higher drainage rate with accumulative drainage amount greater than 60 mm were from soil profile horizons with clay plus fine silt content of less than 20% and above unity steady infiltration rates. Rainstorm infiltration and drainage rates was shown to depend on permeability and coarseness of the respective soil surface and subsurface horizons; a phenomenon critical for harnessing rain and flood water to recharge groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Periodic paddy field flooding is a major source of groundwater recharge. Many paddy fields thus are used as groundwater recharge ponds after harvesting the first crop of the summer. Following rice harvesting, paddy field surfaces may crack into fissures as a result of drainage and exposure to sunlight. Field observation indicates that applying precipitation to the paddy field can increase the rate of infiltration. To quantitatively evaluate the amount of infiltration in a cracked paddy field, this study sets up a simple soil crack model to simulate the field infiltration process. A three‐dimensional groundwater model FEMWATER is adopted to simulate water movement in the paddy field subjected to various crack conditions. Using the field and laboratory data of irrigation water requirements, soil physical properties, hydraulic conductivities and soil profiles obtained from Ten‐Chung, FEMWATER simulates the water movement in the dry cracked paddy. Simulation results show that if the cracks develop extensively and penetrate the ploughed soil, the infiltration rate may increase significantly. The infiltration fluxes of crack with depths of 80, 60 and 27·5 cm are 18·77, 14·50 and 8·06 times higher than that of 20 cm, respectively. The simulation results of cracks with 80 cm depth correlated closely with field observations. The results of the study elucidate the processes of unsaturated water movement in a dry cracked paddy field. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

Estimating groundwater recharge is essential to ensure the sustainable use of groundwater resources, particularly in arid and semi-arid regions. Soil water balances have been frequently advocated as valuable tools to estimate groundwater recharge. This article compares the performance of three soil water balance models (Hydrobal, Visual Balan v2.0 and Thornthwaite) in the Ventós-Castellar aquifer, Spain. The models were used to simulate wet and dry years. Recharge estimates were transformed into water table fluctuations by means of a lumped groundwater model. These, in turn, were calibrated against piezometric data. Overall, the Hydrobal model shows the best fit between observed and calculated levels (r2 = 0.84), highlighting the role of soil moisture and vegetation in recharge processes.

Editor D. Koutsoyiannis; Associate editor X. Chen

Citation Touhami, I., et al., 2014. Comparative performance of soil water balance models in computing semi-arid aquifer recharge. Hydrological Sciences Journal, 59 (1), 193–203.  相似文献   

13.
The occurrence of water ponding on soil surfaces during and after heavy rainfall produces surface run‐off or surface water accumulation in low‐lying areas, which might reduce the water supply to soils and result in a reduction of the soil water that plants can use, especially in arid climates. On Mongolian rangeland, we observed ponded water on the surface of a specific soil condition subjected to a heavy rainfall of 30 mm/hr. By contrast, ponded water was not observed for the same type of soil where livestock grazing had been removed for 6–8 years via a fence or for nearby soil containing less clay. We measured the infiltration rate (the saturated hydraulic conductivity of the surface soil, Ks) of the three sites by applying ponded water on the soil surface (an intake rate test). The results showed that Ks in the rangeland was lower than the rainfall intensity in the site where water ponded on the soil surface; however, Ks of the soil inside of the fence has recovered to 3 times that of the soil outside of the fence to exceed the rainfall intensity. Heavy rainfall that exceeds the infiltration rate occurs several times a year at the livestock grazing site where we observed ponded water. Slight water repellency of the soil reduces rain infiltration to increase the possibility of surface ponding for the soil.  相似文献   

14.
The Oak Ridges Moraine (ORM) is a key hydrogeologic feature in southern Ontario. Previous research has emphasized the importance of depression‐focused recharge (DFR) for the timing and location of water recharge to the ORM's aquifers. However, the significance of DFR has not been empirically demonstrated, and the ORM's permeable surficial deposits imply that rainfall and snowmelt will largely recharge vertically rather than move laterally to topographic depressions. The exception may be during winter and spring, when concrete soil frost limits infiltration and encourages overland flow. The potential for DFR was examined for closed depressions under forest and agricultural land covers with similar soils and surficial geology. Air temperatures, precipitation, snow depth and water equivalent, soil water contents, soil freezing, and depression surface‐water levels were monitored during the winter and spring of 2012–2013 and 2013–2014. Recharge (R) was estimated at the crest and base of each depression using a 1‐dimensional water balance approach and surface‐applied Br? tracing. Both forest and agricultural land covers experienced soil freezing; however, forest soils did not develop concrete frost. Conversely, agricultural fields saw concrete frost, overland flow, episodic ponding, and subsequent drainage of rain‐on‐snow and snowmelt inputs in open depressions. Recharge at the base of open depressions exceeded that in surrounding areas by an order of magnitude, suggesting that DFR is a significant hydrologic process during winter and spring under agricultural land cover on the ORM. Closed topographic depressions under agricultural land cover on the ORM crest may serve as critical recharge “hot spots” during winter and spring, and the ability of the unsaturated zone beneath these depressions to modify the chemistry of recharging water deserves further attention.  相似文献   

15.
Jordan is classified as an arid to semi‐arid country with a population according to 1999 estimates of 4·8 millions inhabitants and a growth rate of 3·4%. Efficient use of Jordan's scarce water is becoming increasingly important as the urban population grows. This study was carried out within the framework of the joint European Research project ‘Groundwater recharge in the eastern Mediterranean’ and describes a combined methodology for groundwater recharge estimation in Jordan, the chloride method, as well as isotopic and hydrochemical approaches. Recharge estimations using the chloride method range from 14 mm year?1 (mean annual precipitation of 500 mm) for a shallow and stony soil to values of 3·7 mm year?1 for a thick desert soil (mean annual precipitation of 100 mm) and values of well below 1 mm year?1 for thick alluvial deposits (mean annual rainfall of 250 mm). Isotopically, most of the groundwater in the Hammad basin, east Jordan, falls below the global meteoric water line and far away from the Mediterranean meteoric water line, suggesting that the waters are ancient and were recharged in a climate different than Mediterranean. Tritium levels in the groundwater of the Hammad basin are less than the detection limit (<1·3 TU). However, three samples in east Hammad, where the aquifer is unconfined, present tritium values between 1 and 4 TU. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This study investigated the removal of two model pharmaceutically active compounds (PhAcs), viz., ibuprofen and triclosan, in lab‐scale engineered floodplain filtration (EFF) system. Biodegradation experiments were performed to acquire knowledge about the degradation of the targeted PhAcs, at an initial concentration of 350 µg/L. Biodegradation results showed that the two compounds were bio‐transformed to >70% after 15 days of incubation. Column tests were performed in a statistically significant manner to determine the adsorptive potential of the suggested filler layer in the EFF (C/C0), by varying the flow rate and initial concentration of the compound. It was observed based on the F and p‐values that the main effects (F = 3163, p < 0.005) were more significant than the interactive effects (F = 9561, p < 0.05) for both ibuprofen and triclosan removal. Besides, by performing the Student's “t” test, it was concluded that the flow rate plays a major role in determining the rapidness of achieving complete breakthrough than the initial concentration of both the compounds. The data obtained from column studies under biotic conditions indicated that the removal mechanism for PhAcs is mainly biotransformation based, and that an EFF system may be effectively used to remove these emerging compounds during ground water recharge for water recycling.  相似文献   

17.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   

18.
19.
Abstract

This paper analyses the temporal dynamics of soil water balance components in a representative recharge area of the Sierra de Gádor (Almeria, southeastern Spain) in two hydrological years. Two approaches are used to estimate daily potential recharge (PR): Approach 1 based on deriving PR from the water balance as the difference between measurements of rainfall (P) and actual evapotranspiration (E) obtained by eddy covariance; and Approach 2 with PR obtained from the dynamic pattern of the soil moisture (θ) recorded at two depths in the site's thin soil (average 0.35 m thickess). For the hydrological year 2003/04, which was slightly drier than the 30-year average, E accounted for 64% of rainfall and occurred mainly in late spring and early summer. The PR estimated by Approach 1 was 181 ± 18 mm year-1 (36% of rainfall), suggesting an effective groundwater recharge in the study area. In the unusually dry hydrological year 2004/05, E was about 215 mm year-1, close to the annual rainfall input, and allowing very little (8 ± 12 mm year-1) PR according to Approach 1. Estimation of PR based on Approach 2 resulted in PR rates lower than those found by Approach 1, because Approach 2 does not take into account the recharge that occurs through preferential flow pathways (cracks, joints and fissures) which were not monitored with the θ probes. Moreover, using Approach 2, the PR estimates differed widely depending on the time scale considered: with daily mean θ data, PR estimation was lower, especially in late spring, while θ data at 30 min resolution yielded a more reliable prediction of the fraction of total PR resulting from the downward movement of soil water by gravity.

Citation Cantón, Y., Villagarcía, L., Moro, M. J., Serrano-Ortíz, P., Were, A., Alcalá, F. J., Kowalski, A. S., Solé-Benet, A., Lázaro, R. & Domingo, F. (2010) Temporal dynamics of soil water balance components in a karst range in southeastern Spain: estimation of potential recharge. Hydrol. Sci. J. 55(5), 737–753.  相似文献   

20.
John Houston 《水文研究》2002,16(15):3019-3035
The Chacarilla fan in the Atacama Desert is one of several formed in the Late Miocene at the foot of the Pre‐Andean Cordillera overlying the large, complex, Pampa Tamarugal aquifer contained in the continental clastic sediments of the fore‐arc basin. The Pampa Tamarugal aquifer is a strategic source of water for northern Chile but there is continuing doubt over the resource magnitude and recharge. During January 2000 a 1 in 4 year storm in the Andes delivered a 34 million m3 flash flood to the fan apex where c. 70% percolated to the underlying aquifers. Groundwater recharge through the fan is calculated to be a minimum of 200 l/s or 6% of the long‐term catchment rainfall. These figures are supported by hydrochemical data that suggest that recharge may be 9% of long‐term rainfall. Isotopic data suggest groundwater less than 50 years old is transmitted westward through the permeable sheetflood sediments of the fan overlying the main aquifer. Analysis of this and other events shows that the hydrological system is non‐linear with positive feedback. The magnitude of groundwater recharge is dependent on climatic variations, antecedent soil moisture storage and changes in channel characteristics. Long‐term declines in groundwater level may partly result from climatic fluctuations and the causes of such fluctuations are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号