首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distributed hydrology–soil–vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid‐twenty‐first century. A 60‐year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi‐decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub‐basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain–snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double‐digit increases in winter flows and decreases in summer and fall flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   

3.
C. L. I. Ho  C. Valeo 《水文研究》2005,19(2):459-473
Urban winter hydrology has garnered very little attention owing to the general notion that high‐intensity rainfalls are the major flood‐generating events in urban areas. As a result, few efforts have been made to research urban snow and its melt characteristics. This study investigates the characteristics of urban snow that differentiate it from rural snow, and makes recommendations for incorporating these characteristics into an urban snowmelt model. A field study was conducted from the fall of 2001 to the spring of 2002 in the city of Calgary, Canada. Snow depths and densities, soil moisture, soil temperature, snow albedo, net radiation, snow evaporation, and surface temperature were measured at several locations throughout the winter period. The combination of urban snow removal practices and the physical elements that exist in urban areas were found to influence the energy balance of the snowpack profoundly. Shortwave radiation was found to be the main source of energy for urban snow; as a consequence, the albedo of urban snow is a very important factor in urban snowmelt modelling. General observations lead to the classification of snow as one of four types: snow piles, snow on road shoulders, snow on sidewalk edges, and snow in open areas. This resulted in the development of four separate functions for the changing snow albedo values. A study of the frozen ground conditions revealed that antecedent soil moisture conditions had very little impact on frozen ground, and thus frozen ground very nearly always acts as a near impervious area. Improved flood forecasting for urban catchments in cold regions can only be achieved with accurate modelling of urban winter runoff that involves the energy balance method, incorporating snow redistribution and urban snow‐cover characteristics, and using small time steps. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long-Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time-lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process-based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.  相似文献   

5.
The spatial variability of snow water equivalent (SWE) can exert a strong influence on the timing and magnitude of snowmelt delivery to a watershed. Therefore, the representation of sub-grid or sub-watershed snow variability in hydrologic models is important for accurately simulating snowmelt dynamics and runoff response. The U.S. Geological Survey National Hydrologic Model infrastructure with the precipitation-runoff modelling system (NHM-PRMS) represents the sub-grid variability of SWE with snow depletion curves (SDCs), which relate snow-covered area to watershed-mean SWE during the snowmelt period. The main objective of this research was to evaluate the sensitivity of simulated runoff to SDC representation within the NHM-PRMS across the continental United States (CONUS). SDCs for the model experiment were derived assuming a range of SWE coefficient of variation values and a lognormal probability distribution function. The NHM-PRMS was simulated at a daily time step for each SDC over a 14-year period. Results highlight that increasing the sub-grid snow variability (by changing the SDC) resulted in a consistently slower snowmelt rate and longer snowmelt duration when averaged across the hydrologic response unit scale. Simulated runoff was also found to be sensitive to SDC representation, as decreases in simulated snowmelt rate by 1 mm day−1 resulted in decreases in runoff ratio by 1.8% on average in snow-dominated regions of the CONUS. Simulated decreases in runoff associated with slower snowmelt rates were approximately inversely proportional to increases in simulated evapotranspiration. High snow persistence and peak SWE:annual precipitation combined with a water-limited dryness index was associated with the greatest runoff sensitivity to changing snowmelt. Results from this study highlight the importance of carefully parameterizing SDCs for hydrologic modelling. Furthermore, improving model representation of snowmelt input variability and its relation to runoff generation processes is shown to be an important consideration for future modelling applications.  相似文献   

6.
A theory of pressure sensor response in snow is derived and used to examine the sources of measurement errors in snow water equivalent (SWE) pressure sensors. Measurement errors in SWE are caused by differences in the compressibility of the pressure sensor and the adjacent snow layer, which produces a shear stress along the perimeter of the sensor. When the temperature at the base of the snow cover equals 0 °C, differences in the snowmelt rate between the snow–SWE sensor interface and the adjacent snow–soil interface may also produce a shear stress along the sensor's perimeter. This shear stress perturbs the pressure field over the sensor, producing SWE measurement errors. Snow creep acts to reduce shear stresses along the SWE sensor's perimeter at a rate that is inversely proportional to the snow viscosity. For sustained periods of differential snowmelt, a difference in the mass of snow over the sensor compared with the surrounding soil will develop, producing additional permanent errors in SWE measurements. The theory indicates that SWE pressure sensor performance can be improved by designing a sensor with a high Young's modulus (low compressibility), low aspect ratio, large diameter and thermal properties that match those of the surrounding soil. Simulations of SWE pressure sensor errors using the theory are in close agreement with observed errors and may provide a means to correct historical SWE measurements for use in hydrological hindcast or climate studies. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

7.
Snow distribution patterns are still poorly understood in steep alpine catchments because of mass redistribution from wind and avalanching. Snow models rarely operate with sufficient resolution, physics or input data to resolve this issue explicitly, and existing sub-grid parameterisations are rarely tested in this type of terrain. To address this issue daily snow cover observations, obtained from a ground-based camera, are combined with a snow melt model to estimate the spatial distribution of snow water equivalent (SWE) in a mountainous alpine catchment. Results show the importance of slope in controlling the spatial distribution of SWE and snow duration. This distribution is linked to the physical process of gravitational transport, where there is removal of snow from steep slopes and preferential deposition on moderate-angle slopes. From a modelling perspective, if sub-grid snow variability is parameterised using a log-normal probability distribution (as is common in hydrological and land-use models) then ignoring steep/shallow slope differences leads to an overestimation of melt at the beginning of the melt season, and a premature end to the snow melt season. When modelling SWE in complex terrain, care should be taken to consider reduced SWE on steep slopes.  相似文献   

8.
Snowmelt energetics at a shrub tundra site in the western Canadian Arctic   总被引:1,自引:0,他引:1  
Snow accumulation and melt were observed at shrub tundra and tundra sites in the western Canadian Arctic. End of winter snow water equivalent (SWE) was higher at the shrub tundra site than the tundra site, but lower than total winter snowfall because snow was removed by blowing snow, and a component was also lost to sublimation. Removal of snow from the shrub site was larger than expected because the shrubs were bent over and covered by snow during much of the winter. Although SWE was higher at the shrub site, the snow disappeared at a similar time at both sites, suggesting enhanced melt at the shrub site. The Canadian Land Surface Scheme (CLASS) was used to explore the processes controlling this enhanced melt. The spring‐up of the shrubs during melt had a large effect on snowmelt energetics, with similar turbulent fluxes and radiation above the canopy at both sites before shrub emergence and after the snowmelt. However, when the shrubs were emerging, conditions were considerably different at the two sites. Above the shrub canopy, outgoing shortwave radiation was reduced, outgoing longwave radiation was increased, sensible heat flux was increased and latent flux was similar to that at the tundra site. Above the snow surface at this site, incoming shortwave radiation was reduced, incoming longwave radiation was increased and sensible heat flux was decreased. These differences were caused by the lower albedo of the shrubs, shading of the snow, increased longwave emission by the shrub stems and decreased wind speed below the shrub canopy. The overall result was increased snowmelt at the shrub site. Although this article details the impact of shrubs on snow accumulation and melt, and energy exchanges, additional research is required to consider the effect of shrub proliferation on both regional hydrology and climate. Copyright 2010 John Wiley & Sons Ltd and Crown in the right of Canada.  相似文献   

9.
Wetlands are now being integrated into oil sands mining landscape closure design plans. These wetland ecosystems will be constructed within a regional sub‐humid climate where snowfall represents ~25% of annual precipitation. However, few studies focus on the distribution of snow and, hence, the storage of winter precipitation in reclaimed oil sands landscapes. In this study, the distribution, ablation and fate of snowmelt waters are quantified within a constructed watershed in a post‐mining oil sands environment. Basin‐averaged peak SWE was 106 mm, with no significant difference between reclaimed slopes with vegetation and those that were sparsely vegetated or bare. Snow depth was greatest and more variable near the toe of slopes and became progressively shallower towards the crest. Snow ablation started first on the vegetated slope, which also exhibited the maximum observed ablation rates. This enhanced melt was attributed to increased absorption of short‐wave radiation by vegetation stems and branches. Recharge to reclaimed slopes and a constructed aquifer during the snowmelt period was minimal, as the presence of ground frost minimized infiltration. Accordingly, substantial surface run‐off was observed from all reclaimed slopes, despite being designed to reduce run‐off and increase water storage. This could result in increased flashiness of downstream watercourses during the spring freshet that receive run‐off from post‐mining landscapes where large reclaimed slopes are prolific. Run‐off ratios for the reclaimed slopes were between 0.7 and 0.9. Thus, it is essential to consider snow dynamics when designing landscape‐scale constructed ecosystems. This research demonstrates that the snowmelt period hydrology within reclaimed landscapes is fundamentally different from that reported for natural settings and represents one of the first studies on snow dynamics in constructed watershed systems in the post‐mined oil sands landscape. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
An accurate simulation of snowmelt runoff is of much importance in arid alpine regions. Data availability is usually an obstacle to use energy‐based snowmelt models for the snowmelt runoff simulation, and temperature‐based snowmelt models are more appealing in these regions. The snow runoff model is very popular nowadays, especially in the data sparse regions, because only temperature, precipitation and snow cover data are required for inputs to the model. However, this model uses average temperature as index, which cannot reflect the snowmelt simulation in the high altitude band. In this study, the snow runoff model is modified on the basis of accumulated active temperature. Snow cover calculation algorithm is added and is no longer needed as input but output. This makes the model able to simulate long‐time runoff and long‐time snow cover variation in every band. An examination of the improved model in the Manas River basin showed that the model is effective. It can reproduce the behaviour of the hydrology and can reflect the actual snow cover fluctuation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Mountain headwater catchments in the semi‐arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. This study examined subsurface runoff in two hillslopes, one aspen dominated, the other conifer dominated, adjacent to a first order stream in snow‐driven northern Utah. Snow accumulation, soil moisture, trenchflow and streamflow were examined in hillslopes and their adjacent stream. Snow water equivalents (SWEs) were greater under aspen stands compared to conifer, the difference increasing with higher annual precipitation. Semi‐variograms of shallow spatial soil moisture patterns and transects of continuous soil moisture showed no increase in soil moisture downslope, suggesting the absence of subsurface flow in shallow (~12 cm) soil layers of either vegetation type. However, a clear threshold relationship between soil moisture and streamflow indicated hillslope–stream connectivity, deeper within the soil profile. Subsurface flow was detected at ~50 cm depth, which was sustained for longer in the conifer hillslope. Soil profiles under the two vegetation types varied, with deep aspen soils having greater water storage capacity than shallow rocky conifer soils. Though SWEs were less under the conifers, the soil profile had less water storage capacity and produced more subsurface lateral flow during the spring snowmelt. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Snow interception in a coniferous stand leads to considerable short-range variability in snowcover depth, which in turn affects the water and heat regime of the soil. To study the coupling between snow accumulation, frost penetration, and hydrological response, plot-scale experiments were conducted in a subalpine spruce forest. The stony, sandy–loamy Spodosol was highly permeable and had an organic layer of 5–15 cm thickness. Within two plots, one underneath a tree crown and one in a canopy gap, we measured near-surface runoff, soil temperature, and liquid water content. Snow and frost depths varied more in space than between two winter periods at given locations. Frost penetration was greater near the trunk, where a higher portion of snowmelt water drained downslope close to the surface than in the gap due to frost-induced reduction of infiltration. In both years, the spring snowmelt occurred over two distinct periods. During the first snowmelt, the water percolated primarily through the frozen layer and part of it probably refroze within the frozen layer, thereby raising the total water and ice content. During the second event, near-surface runoff was more pronounced.  相似文献   

14.
Multivariate statistical analysis was used to explore relationships between catchment topography and spatial variability in snow accumulation and melt processes in a small headwater catchment in the Spanish Pyrenees. Manual surveys of snow depth and density provided information on the spatial distribution of snow water equivalent (SWE) and its depletion over the course of the 1997 and 1998 melt seasons. A number of indices expressing the topographic control on snow processes were extracted from a detailed digital elevation model of the catchment. Bivariate screening was used to assess the relative importance of these topographic indices in controlling snow accumulation at the start of the melt season, average melt rates and the timing of snow disappearance. This suggested that topographic controls on the redistribution of snow by wind are the most important influence on snow distribution at the start of the melt season. Furthermore, it appeared that spatial patterns of snow disappearance were largely determined by the distribution of snow water equivalent (SWE) at the start of the melt season, rather than by spatial variability in melt rates during the melt season. Binary regression tree models relating snow depth and disappearance date to terrain indices were then constructed. These explained 70–80% of the variance in the observed data. As well as providing insights into the influence of topography on snow processes, it is suggested that the techniques presented herein could be used in the parameterization of distributed snowmelt models, or in the design of efficient stratified snow surveys. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Snow accumulation in mountain headwater basins is a major water source, particularly in semi‐arid environments such as southern Alberta where water resources are stressed and snowmelt supplies more than 80% of downstream runoff. Relationships between landscape predictor variables and snow water equivalent (SWE) were quantified by combining field and LiDar measurements with classification and regression tree analysis over two winter seasons (2010 and 2011) in a small, montane watershed. 2010 was a below average snow accumulation year, while 2011 was well above normal. In both the field and regression tree data, elevation was the dominant control on snow distribution in both years, although snow distribution was driven by melt processes in 2010 and accumulation processes in 2011. The importance of solar radiation and wind exposure was represented in the regression trees in both years. The regression trees also noted the lower importance of canopy closure, slope, and aspect, which was not observed in the field data. This technique could provide an additional method of forecasting annual water supply from melting snow. However, further research is required to address the lack of data collected above treeline, to provide a full‐basin estimate of SWE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In the Colorado Front Range, forested catchments near the rain–snow transition are likely to experience changes in snowmelt delivery and subsurface water transport with climate warming and associated shifts in precipitation patterns. Snowpack dynamics are strongly affected by aspect: Lodgepole pine forested north‐facing slopes develop a seasonal snowpack, whereas Ponderosa pine‐dotted south‐facing slopes experience intermittent snow accumulation throughout winter and spring. We tested the degree to which these contrasting water input patterns cause different near‐surface hydrologic response on north‐facing and south‐facing hillslopes during the snowmelt period. During spring snowmelt, we applied lithium bromide (LiBr) tracer to instrumented plots along a north–south catchment transect. Bromide broke through immediately at 10‐ and 30‐cm depths on the north‐facing slope and was transported out of soil waters within 40 days. On the south‐facing slope, Br? was transported to significant depths only during spring storms and remained above the detection limit throughout the study. Modelling of unsaturated zone hydrologic response using Hydrus‐1D corroborated these aspect‐driven differences in subsurface transport. Our multiple lines of evidence suggest that north‐facing slopes are dominated by connected flow through the soil matrix, whereas south‐facing slope soils experience brief periods of rapid vertical transport following snowmelt events and are drier overall than north‐facing slopes. These differences in hydrologic response were largely a function of energy‐driven differences in water supply, emphasizing the importance of aspect and climate forcing when considering contributions of water and solutes to streamflow in catchments near the snow line. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A network of 30 standalone snow monitoring stations was used to investigate the snow cover distribution, snowmelt dynamics, and runoff generation during two rain‐on‐snow (ROS) events in a 40 km2 montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent (SWE) distribution within the catchment was applied on an hourly basis for two significant ROS flood events that occurred in December 2012. The available snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for the runoff generation. The study provides a spatially and temporally distributed picture of how the two observed ROS floods developed in the catchment. It became evident that the retention capacity of the snow cover is a crucial mechanism during ROS. It took several hours before water was released from the snowpack during the first ROS event, while retention storage was exceeded within 1 h from the start of the second event. Elevation was the most important terrain feature. South‐facing terrain contributed more water for runoff than north‐facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of snowmelt together with liquid precipitation for the generation of flood runoff during ROS and the large temporal and spatial variability of the relevant processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

20.
Several models for simulation of water balance processes in semi-arid mountainous basins were developed by coupling different modules of existing water balance models (WBM). Snow accumulation and snowmelt rate relationships extracted from the McCabe-Markstrom, Guo, Rao-Al Wagdany and WASMOD-M WBMs, originally developed for basins with humid climate, were coupled with the Jazim WBM, primarily developed for arid basins. Karaj Basin, central Iran, with snowy autumn–winter and dry summer periods, was selected to assess model performance. The model parameters were optimized using a genetic algorithm (GA). All coupled models performed better than the non-modified (original) WBMs in the study basin. The coupled Jazim–McCabe-Markstrom model provided the best performance in simulating low and high monthly flows. It estimated the snowmelt runoff values more accurately than other proposed coupled models because the linear relationships used in the snow module of the McCabe-Markstrom model are more compatible with snow variations in the Karaj Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号