首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 · 10−8 to 1 · 10−5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of surface functional groups available for adsorption in the surface coatings; 2) the electric field at the mineral-water interface; and 3) surface reactions of major ions in the aqueous phase, such as Ca2+, Mg2+, HCO3, SO42−, H4SiO4, and organic acids. In contrast, a semi-empirical surface complexation modeling approach can be used to describe the U(VI) experimental data more precisely as a function of aqueous chemical conditions. This approach is useful as a tool to describe the variation in U(VI) retardation as a function of chemical conditions in field-scale reactive transport simulations, and the approach can be used at other field sites. However, the semi-empirical approach is limited by the site-specific nature of the model parameters.  相似文献   

2.
The combined influence of dip angle and adsorption heterogeneity on solute transport mechanisms in heterogeneous media can be understood by performing simulations of steady-state flow and transient transport in a heterogeneous aquifer with dipping anisotropy. Reactive and non-reactive contaminant transport in various types of heterogeneous aquifer is studied by simulations. The hydraulic conductivity (K) of the heterogeneous aquifer is generated by HYDRO_GEN with a Gaussian correlation spectrum. By considering the heterogeneity of the adsorption distribution coefficient (K d), a perfect negative correlation between lnK and lnK d is obtained by using the spherical grains model. The generated K and K d are used as input to groundwater flow and transport models to investigate the effects of dipping sedimentary heterogeneity on contaminant plume evolution. Simulation results showed that the magnitude of the dip angle strongly controls the plume evolution in the studied anisotropic and heterogeneous aquifer. The retarded average pore-water velocity (v/R) of the adsorption model significantly controls the horizontal spreading of the plume. The bottom plume is intensively retarded in the zones between the dipping lenses of lower hydraulic conductivity and the no-flow bottom boundary. The implications of these findings are very important for the management of contaminated heterogeneous aquifers.  相似文献   

3.
《Applied Geochemistry》2001,16(4):437-450
Partitioning of 41 elements between solids and water was studied by filtration and dialysis in situ in Czech freshwaters. Field-based distribution (partition) coefficients, KD, between suspended particulate matter (SPM) and filtrate (‘dissolved’ fraction) differed by 4 orders of magnitude. The highest KD values (log KD>2.0 l/g) were exhibited by Zr, Al, Ce, Pb, La, Ti, Fe, Sm, Th and Cr which are extremely insoluble in near-neutral water or generally poorly soluble (Zr,Ti). The KDs decrease with element and DOC loading due to the relative increase of the element in the low molecular fraction. Log KD mostly increased linearly with pH within a range from 3.5 to 9. KDU decreased at pH >6 due to carbonate complexation. The colloidal fraction (>1 kDa <0.4 μm) in a reservoir with a pH of 6.8 was mainly preferred by Fe, Pb, Be, Nb, Y, Al, Ni, U and Zr. When the colloidal fraction is not differentiated from true solution, then incorrect information about partitioning may be obtained and the highest KD may decrease.  相似文献   

4.
This research describes the goals, design and implementation of a quasi natural gradient, laboratory scale, sand tank (aquifer) model experiment. The model was used to study the transport of an inorganic tracer (Chloride) in groundwater, within a tropical aquifer (porous medium) material. Three-dimensional sand tank (1.8 m × 0.3 m × 0.8 m) experiments were conducted to investigate contaminant transport and natural attenuation within the sand tank. In all, 360 samples were collected during 24 sampling sessions, for the three days of the tracer experiments in the Sand Tank. The Owena sand is a poorly graded sand with 88.1 % sand and 11.9 % gravel. Geotechnical properties including; coefficient of uniformity Cu = 2.53, coefficient of gradation Cz = 0.181, hydraulic conductivity K = 5.76 × 10?4 m/s, bulk density p = 1.9 Mg/m3, effective porosity ne = 0.215 and median grain diameter D50 = 0.55 mm, were determined. Other relevant hydraulic and solute transport parameters, such as dispersion coefficients and dispersivities were also established for the tropical soil.  相似文献   

5.
蒋立群  孙蓉琳  梁杏 《地球科学》2021,46(11):4150-4160
为探讨含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响,基于非均质含水层砂箱实验,分别用传统等效均质模型、克立金插值和水力层析刻画含水层渗透系数场,并探讨了先验信息对水力层析结果的影响.将不同方法估算的渗透系数场用以预测地下水流和溶质运移过程,以此判断不同方法估算结果的优劣,分析含水层非均质性对地下水流和溶质运移的影响.结果表明:与克立金插值法相比,水力层析法可以更好地刻画含水层非均质性,较准确地预测地下水流和溶质运移过程;钻孔岩心渗透系数样本值作为先验信息可以提高水力层析法估算结果的精度;传统等效均质模型无法准确预测地下水流和溶质运移过程.含水层非均质性的增强将导致溶质污染羽分布形态和运移路径的空间变异性增强,并且优势通道直接决定溶质的分布及运移路径.   相似文献   

6.
Sorption of U(VI) on Hanford fine sand (HFS) with varying Fe-oxide (especially ferrihydrite) contents showed that U(VI) sorption increased with the incremental addition of synthetic ferrihydrite into HFS, consistent with ferrihydrite being one of the most reactive U(VI) sorbents present in natural sediments. Surface complexation model (SCM) calculations for U(VI) sorption, using only U(VI) surface-reaction constants obtained from U(VI) sorption data on freshly synthesized ferrihydrite at different pHs, were similar to the measured U(VI) sorption results on pure synthetic ferrihydrite and on HFS with high contents of ferrihydrite (5 wt%) added. However, the SCM prediction using only U(VI) sorption reactions and constants for synthetic ferrihydrite overestimated U(VI) sorption on the natural HFS or HFS with addition of low amounts of added ferrihydrite (1 wt% added). Over-predicted U(VI) sorption was attributed to reduced reactivity of natural ferrihydrite present in Hanford Site sediments, compared to freshly prepared synthetic ferrihydrite. Even though the SCM general composite (GC) approach is considered to be a semi-quantitative estimation technique for contaminant sorption, which requires systematic experimental data on the sorbent–sorbate system being studied to obtain credible SCM parameters, the general composite SCM model was still found to be a useful technique for describing U(VI) sorption on natural sediments. Based on U(VI) batch sorption results, two simple U(VI) monodentate surface species, SO_UO2HCO3 and SO_UO2OH on ferrihydrite and phyllosillicate in HFS, respectively, can be successfully used to describe U(VI) sorption onto Hanford Site sediment contacting varying geochemical solutions.  相似文献   

7.
The concentrations of uranium, iron and the major constituents were determined in groundwater samples from aquifer containing uranyl phosphate minerals (meta-autunite, meta-torbernite and torbernite) in the Köprüba?? area. Groundwater samples from wells located at shallow depths (0.5–6 m) show usually near neutral pH values (6.2–7.1) and oxidizing conditions (Eh = 119–275 mV). Electrical conductivity (EC) values of samples are between 87 and 329 μS/cm?1. They are mostly characterized by mixed cationic Ca dominating bicarbonate types. The main hydrogeochemical process is weathering of the silicates in the shallow groundwater system. All groundwater in the study area are considered undersaturated with respect to torbernite and autunite. PHREEQC predicted UO2(HPO4) 2 2? as the unique species. The excellent positive correlation coefficient (r = 0.99) between U and PO4 indicates the dissolved uranium in groundwater would be associated with the dissolution of uranyl phosphate minerals. The groundwater show U content in the range 1.71–70.45 μg/l but they are mostly lower than US EPA (2003) maximum contaminant level of 30 μg/l. This low U concentrations in oxic groundwater samples is attributed to the low solubility of U(VI) phosphate minerals under near neutral pH and low bicarbonate conditions. Iron closely associated with studied sediments, were also detected in groundwater. The maximum concentration of Fe in groundwater samples was 2837 μg/l, while the drinking water guidelines of Turkish (TSE 1997) and US EPA (2003) were suggested 200 and 300 μg/l, respectively. Furthermore, iron and uranium showed a significant correlation to each other with a correlation coefficient (r) of 0.94. This high correlation is probably related to the iron-rich sediments which contain also significant amounts of uranium mineralization. In addition to pH and bicarbonate controlling dissolution of uranyl phosphates, association of uranyl phosphates with iron (hydr) oxides seems to play important role in the amount of dissolved U in shallow groundwater.  相似文献   

8.
The main factors and mechanisms controlling the groundwater chemistry and mineralization are recognized through hydrochemical data. However, water quality prediction remains a key parameter for groundwater resources management and planning. The geochemical study of groundwater of a multilayered aquifer system in Tunisia is recognized by measurements of the pH, EC, total dissolved solids (TDS), major ion concentration and nitrates of 36 samples from pumping wells covering the aquifer extension and analyzed using standard laboratory and field methods. The calcite precipitation, gypsum, anhydrite and halite dissolution, and direct and reverse ion exchange are the principal process of chemical evolution in the Nadhour-Saouaf aquifer system. Using stepwise regression, the concentration groups of (Ca, Cl, and NO3), (Cl, SO4, and Mg), and (Ca and Na) exhibit significant prediction of TDS in Plio-Quaternary, Miocene, and Oligocene aquifer levels, respectively. The highest values of R 2 and adjusted R 2 close to 1 revealed the accuracy of the developed models which is confirmed by the weak difference between the measured and estimated values varying between ?12 and 8%. The important uncertainty parameters that affected the estimated TDS are assessed by the sensitivity analysis method. The concentration of (Cl), (Ca and Cl), and (Na) are the major parameters affecting the TDS sensitivity of the Plio-Quaternary, Miocene, and Oligocene aquifer levels, respectively. Hence, the developed TDS models provide a more simple and easy alternative to other methods used for groundwater quality estimation and prediction as proven from external validation on groundwater samples unconsidered in the model construction.  相似文献   

9.
Microbially mediated in situ reduction of soluble U(VI) to insoluble U(IV) (as UO2) has been proposed as a means of preventing the migration of that radionuclide with groundwater, but preventing the oxidative resolubilization of U has proven difficult. We hypothesized that relatively slow rates of U(VI) bioreduction would yield larger UO2 precipitates that would be more resistant to oxidation than those produced by rapid U(VI) bioreduction. We manipulated U(VI) bioreduction rates by varying the density of Shewanella putrefaciens CN32 added to U(VI) containing solutions with lactate as an electron donor. Characterization of biogenic UO2 particles by extended X-ray absorption fine-structure spectroscopy and transmission electron microscopy revealed that UO2 nanoparticles formed by relatively slow rates of U(VI) reduction were larger and more highly aggregated than those formed by relatively rapid U(VI) reduction. UO2 particles formed at various rates were incubated under a variety of abiotically and biologically oxidizing conditions. In all cases, UO2 that was formed by relatively slow U(VI) reduction was oxidized at a slower rate and to a lesser extent than UO2 formed by relatively rapid U(VI) bioreduction, suggesting that the stability of UO2 in situ may be enhanced by stimulation of relatively slow rates of U(VI) reduction.  相似文献   

10.
Evaluation of major ion chemistry and solute acquisition process controlling water chemical composition were studied by collecting a total of fifty-one groundwater samples in shallow (<25 m) and deep aquifer (>25 m) in the Varanasi area. Hydrochemical facies, Mg-HCO3 dominated in the largest part of shallow groundwater followed by Na-HCO3 and Ca-HCO3 whereas Ca-HCO3 is dominated in deep groundwater followed by Mg-HCO3 and Na-HCO3. High As concentration (>50 μg/l) is found in some of the villages situated in northeastern parts (i.e. adjacent to the concave part of the meandering Ganga river) of the Varanasi area. Arsenic contamination is confined mostly in tube wells (hand pump) within the Holocene newer alluvium deposits, whereas older alluvial aquifers are having arsenic free groundwater. Geochemical modeling using WATEQ4F enabled prediction of saturation state of minerals and indicated dissolution and precipitation reactions occurring in groundwater. Majority of shallow and deep groundwater samples of the study area are oversaturated with carbonate bearing minerals and under-saturated with respect to sulfur and amorphous silica bearing minerals. Sluggish hydraulic conductivity in shallow aquifer results in higher mineralization of groundwater than in deep aquifer. But the major processes in deep aquifer are leakage of shallow aquifer followed by dominant ion-exchange and weathering of silicate minerals.  相似文献   

11.
The Guarani aquifer system (GAS) represents one of the biggest aquifers in the world and is the most relevant groundwater resource in South America. For the first time, by combining field and laboratory measurements, a high-resolution aquifer analog model of fluvial–aeolian sediments of the GAS in São Paulo State (Brazil) is constructed. Three parallel sections of frontal outcrops, 28 m × 5.8 m, and two parallel sections of lateral outcrops, 7 m × 5.8 m, are recorded during open-pit mining of sandy sediments and describe in detail the three-dimensional distribution of the local lithofacies and hydrofacies. Variations of hydraulic conductivity, K, and porosity, n, are resolved on the centimeter scale, and the most permeable units of the fluvial–aeolian facies association are identified. The constructed aquifer analog model shows moderate hydraulic heterogeneity and a mean K value of 1.36 × 10?4 m/s, which is greater than the reported range of K values for the entire GAS in São Paulo State. The results suggest that the examined sedimentary unit constitutes a relevant portion of the GAS in São Paulo State in the context of groundwater extraction and pollution. Moreover, the constructed aquifer analog is considered an ideal basis for future numerical model experiments, aiming at in-depth understanding of the groundwater flow and contaminant transport patterns at this GAS portion or at comparable fluvial–aeolian facies associations.  相似文献   

12.
It is challenging to predict the degree to which shallow groundwater might be affected by leaks from a CO2 sequestration reservoir, particularly over long time scales and large spatial scales. In this study observations at a CO2 enriched shallow aquifer natural analog were used to develop a predictive model which is then used to simulate leakage scenarios. This natural analog provides the opportunity to make direct field observations of groundwater chemistry in the presence of elevated CO2, to collect aquifer samples and expose them to CO2 under controlled conditions in the laboratory, and to test the ability of multi-phase reactive transport models to reproduce measured geochemical trends at the field-scale. The field observations suggest that brackish water entrained with the upwelling CO2 are a more significant source of trace metals than in situ mobilization of metals due to exposure to CO2. The study focuses on a single trace metal of concern at this site: U. Experimental results indicate that cation exchange/adsorption and dissolution/precipitation of calcite containing trace amounts of U are important reactions controlling U in groundwater at this site, and that the amount of U associated with calcite is fairly well constrained. Simulations incorporating these results into a 3-D multi-phase reactive transport model are able to reproduce the measured ranges and trends between pH, pCO2, Ca, total C, U and Cl at the field site. Although the true fluxes at the natural analog site are unknown, the cumulative CO2 flux inferred from these simulations are approximately equivalent to 37.8E−3 MT, approximately corresponding to a .001% leak rate for injection at a large (750 MW) power plant. The leakage scenario simulations suggest that if the leak only persists for a short time the volume of aquifer contaminated by CO2-induced mobilization of U will be relatively small, yet persistent over 100 a.  相似文献   

13.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

14.
《Applied Geochemistry》2000,15(7):1035-1042
Bacteriogenic Fe oxides (BIOS) and groundwater samples were collected 195 m underground at the Stråssa Mine in central Sweden. Ferrous iron oxidizing bacteria, including stalked Gallionella ferruginea and filamenous Leptothrix sp., were prominent in the BIOS samples. The BIOS samples were found to contain only poorly ordered (amorphous) hydrous ferric oxide, as determined by X-ray diffraction. Inductively coupled plasma mass spectroscopy revealed hydroxylamine-reducible Fe and Mn oxide contents that ranged from 55 to 85% on a dry weight basis. Concentrations of Sr, Cs, Pb and U in filtered groundwater ranged from 0.002 to 1.8 μM. Solid phase concentrations of these heavy metals in the BIOS spanned the 0.04–2.23 mmol/kg range. Distribution coefficients (Kd values), calculated as the ratio between BIOS and dissolved heavy metal concentrations, revealed solid phase enrichments that, depending on the heavy metal and Fe oxide content of the sample, extended from 103.0 to 104.7. At the same time, however, a strong inverse linear relationship was found between log Kd values and the corresponding mass fraction of reducible oxide in the samples, implying that metal uptake was strongly influenced by the relative proportion of bacterial organic matter in the composite solids. Based on the metal accumulation properties of the BIOS, an important role can be inferred for intermixed Fe oxides and bacterial organic matter in the transport and fate of dissolved metals in groundwater systems.  相似文献   

15.
The risk of groundwater contamination by chromate at a former chromite ore processing industrial site in Rivera (Switzerland) was assessed by determining subsoil Cr(VI) concentrations and tracking naturally occurring Cr(VI) reduction with Cr isotopes. Using a hot alkaline extraction procedure, a total Cr(VI) contamination of several 1000 kg was estimated. Jarosite, KFe3((SO4)x(CrO4)1−x)2(OH)6, and chromatite (CaCrO4) were identified as Cr(VI) bearing mineral phases using XRD, both limiting groundwater Cr(VI) concentrations. To track assumed Cr(VI) reduction at field scale δ53Cr values of contaminated subsoil samples in addition to groundwater δ53Cr data are used for the first time. The measurements showed a fractionation of groundwater δ53Cr values towards positive values and subsoil δ53Cr towards negative values confirming reduction of soluble Cr(VI) to insoluble Cr(III). Using a Rayleigh fractionation model, a current Cr(VI) reduction efficiency of approximately 31% along a 120 m long flow path was estimated at an average linear groundwater velocity of 3.3 m/d. Groundwater and subsoil δ53Cr values were compared with a site specific Rayleigh fractionation model proposing that subsoil δ53Cr values can possibly be used to track previous higher Cr(VI) reduction efficiency during the period of industrial activity. The findings strongly favor monitored natural attenuation to be part of the required site remediation measures.  相似文献   

16.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

17.
In solution thermodynamics, and more recently in surface chemistry, it is well established that relationships can be found between the free energies of formation of aqueous or surface metal complexes and thermodynamic properties of the metal ions or ligands. Such systematic dependencies are commonly termed linear free energy relationships (LFER). A 2 site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model has been used to model “in house” and literature sorption edge data for eleven elements: Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) to provide surface complexation constants for the strong sites on montmorillonite. Modelling a further 4 sets of sorption isotherms for Ni(II), Zn(II), Eu(III) and U(VI) provided complexation constants for the weak sites. The protolysis constants and site capacities derived for the 2SPNE SC/CE model in previous work were fixed in all of the calculations. Cation exchange was modelled simultaneously to provide selectivity coefficients. Good correlations between the logarithms of strong SKx−1 and weak W1Kx−1 site binding constants on montmorillonite and the logarithm of the aqueous hydrolysis constants OHKx were found which could be described by the following equations: Strong (≡SSOH) sites:
SlogKX−1=8.1±0.3+(0.90±0.02)logOHKX  相似文献   

18.
The effect of dissolved organic matter (DOM) on Am(III), Pu(IV), Np(V), and U(VI) sorption was investigated with natural water (pH ∼8) and zeolitized tuff samples collected from the Rainier Mesa tunnel system, Nevada Test Site, where the USA detonated underground nuclear tests prior to 1992. Perched vadose zone water at Rainier Mesa has high levels of DOM as a result of microbial degradation of mining debris (diesel, wood, etc.). The Am and Pu sorption Kds were up to two orders of magnitude lower in water with high DOM (15-19 mg C/L) compared to the same water with DOM removed (<0.4 mg C/L) or in naturally low DOM (0.2 mg C/L) groundwater. In contrast, Kds of Np and U were less affected by DOM at these solution conditions. Uranium sorption decreased as a result of high dissolved inorganic C (DIC) resulting from microbial degradation of DOM. Thermodynamic model predictions, based on actinide-humic acid stability constants available in the literature, are in general agreement with measured Kd data, correctly predicting the effects of DIC and DOM on actinide retardation. This agreement is encouraging to future modeling efforts and suggests that effects of DOM and DIC can be incorporated into reactive transport modeling predictions. The Am and Pu transport rates in Rainier Mesa tunnel waters will be substantially faster as a result of the elevated DOM levels. Low diffusion rates of actinide-DOM macromolecular complexes may focus Pu and Am transport into fractures and minimize retardation via matrix diffusion. The resulting transport behavior will affect actinide distribution patterns and associated risk estimates.  相似文献   

19.
The groundwater downstream of a former sewage irrigation farm in Berlin is contaminated with ammonium (NH4 +) and para-toluenesulfonamide (p-TSA), besides other anthropogenic pollutants. In the field, in situ removal of NH4 + by gaseous oxygen (O2) and air injection is currently being tested. A laboratory column experiment using aquifer material and groundwater from the site was performed to determine whether this remediation technology is also feasible to reduce high p-TSA concentrations in the anoxic groundwater. First, the column was operated under anoxic conditions. Later, compressed air was introduced into the system to simulate oxic conditions. Samples were collected from the column outlet before and after the addition of compressed air. The experiment revealed that whereas p-TSA was not removed under anoxic conditions, it was almost fully eliminated under oxic conditions. Results were modelled using a transient one-dimensional solute transport model. The degradation rate constants for p-TSA increased from 2.8E−06 to 7.5E−05 s–1 as a result of microbial adaption to the change of redox conditions. Results show that O2 injection into an anoxic aquifer is a successful strategy for p-TSA remediation.  相似文献   

20.
Aluminium has received great attention in the second half of the 20th century, mainly in the context of the acid rain problem mostly in forest soils. In this research the effect of land use and depth of the groundwater on Al, pH and DOC concentration in groundwater under Dutch sandy soils has been studied. Both pH and DOC concentration play a major role in the speciation of Al in solution. Furthermore, the equilibrium with mineral phases like gibbsite, amorphous Al(OH)3 and imogolite, has been considered. Agricultural and natural land use were expected to have different effects on the pH and DOC concentration, which in turn could influence the total Al concentration and the speciation of Al in groundwater at different depths (phreatic, shallow and deep). An extensive dataset (n = 2181) from the national and some provincial monitoring networks on soil and groundwater quality was used. Land use type and groundwater depth did influence the pH, and Al and DOC concentrations in groundwater samples. The Al concentration ranged from <0.4 μmol L−1 at pH > 7 to 1941 μmol L−1 at pH < 4; highest Al concentrations were found for natural-phreatic groundwater. The DOC concentration decreased and the median pH increased with depth of the groundwater. Natural-phreatic groundwater showed lower pH than the agricultural-phreatic groundwater. Highest DOC concentrations were found for the agricultural-phreatic groundwater, induced by the application of organic fertilizers. Besides inorganic complexation, the NICA-Donnan model was used to calculate Al3+ concentrations for complexation with DOC. Below pH 4.5 groundwater samples were mainly in disequilibrium with a mineral phase. This disequilibrium is considered to be the result of kinetic constraints or equilibrium with organic matter. Log K values were derived by linear regression and were close to theoretical values for Al(OH)3 minerals (e.g. gibbsite or amorphous Al(OH)3), except for natural-phreatic groundwater for which lower log K values were found. Complexation of Al with DOC is shown to be an important factor for the Al concentrations, especially at high DOC concentrations as was found for agricultural-phreatic groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号