首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of natural and anthropogenicnon-methane hydrocarbons (NMHC) on troposphericchemistry is investigated with the global,three-dimensional chemistry-transport model MOGUNTIA.This meteorologically simplified model allows theinclusion of a rather detailed scheme to describeNMHC oxidation chemistry. Comparing model resultscalculated with and without NMHC oxidation chemistryindicates that NMHC oxidation adds 40–60% to surfacecarbon monoxide (CO) levels over the continents andslightly less over the oceans. Free tropospheric COlevels increase by 30–60%. The overall yield of COfrom the NMHC mixture considered is calculated to beabout 0.4 CO per C atom. Organic nitrate formationduring NMHC oxidation, and their transport anddecomposition affect the global distribution of NO x and thereby O3 production. The impact of theshort-lived NMHC extends over the entire tropospheredue to the formation of longer-lived intermediateslike CO, and various carbonyl and carboxyl compounds.NMHC oxidation almost doubles the net photochemicalproduction of O3 in the troposphere and leads to20–80% higher O3 concentration inNO x -rich boundarylayers, with highest increases over and downwind ofthe industrial and biomass burning regions. Anincrease by 20–30% is calculated for the remotemarine atmosphere. At higher altitudes, smaller, butstill significant increases, in O3 concentrationsbetween 10 and 60% are calculated, maximizing in thetropics. NO from lightning also enhances the netchemical production of O3 by about 30%, leading to asimilar increase in the global mean OH radicalconcentration. NMHC oxidation decreases the OH radicalconcentrations in the continental boundary layer withlarge NMHC emissions by up to 20–60%. In the marineboundary layer (MBL) OH levels can increase in someregions by 10–20% depending on season and NO x levels.However, in most of the MBL OH will decrease by10–20% due to the increase in CO levels by NMHCoxidation chemistry. The large decreases especiallyover the continents strongly reduce the markedcontrasts in OHconcentrations between land and oceanwhich are calculated when only the backgroundchemistry is considered. In the middle troposphere, OHconcentrations are reduced by about 15%, although dueto the growth in CO. The overall effect of thesechanges on the tropospheric lifetime of CH4 is a 15%increase from 6.5 to 7.4 years. Biogenic hydrocarbonsdominate the impact of NMHC on global troposphericchemistry. Convection of hydrocarbon oxidationproducts: hydrogen peroxides and carbonyl compounds,especially acetone, is the main source of HO x in theupper troposphere. Convective transport and additionof NO from lightning are important for the O3 budgetin the free troposphere.  相似文献   

2.
应用大气化学模式WRF-Chem(Weather Research and Forecast-Chemistry),分别选用亚洲排放源清单INTEX-B(Intercontinental Chemical Transport Experiment-Phase B)、REASv2.1(Regional Emission inventory in Asia version 2.1)以及全球排放源清单HTAP_v2(Hemispheric Transport of Air Pollution version 2),对浙江省2013年12月进行模拟,分别记为IN、RE和HT试验,研究人为源排放清单对大气污染物浓度数值模拟的影响。结果表明,3组试验合理的反映出PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)、PM10(空气动力学当量直径小于等于10μm的颗粒物,即可吸入颗粒物)和NO_2近地面浓度的时空分布特征,相关系数为0.5~0.8,85%以上的模拟值落在观测值的0.5~2倍范围内,但对SO_2近地面浓度模拟较差。IN、RE、HT试验对PM2.5和PM10的模拟偏差均成递减趋势,约为30%、16%和6%,HT试验的模拟值更加接近观测。INTEX-B清单中PM2.5的一次排放与二次气溶胶前提物SO_2均高于REAS与HTAP清单,因此会导致更多的硫酸盐生成,从而进一步增加PM2.5浓度。HTAP_v2清单中较低的NH3排放会抑制硝酸盐的生成,从而有助于降低PM2.5浓度。3个清单的基准年与模拟年的差异对SO_2浓度模拟的准确性影响更大,INTEX-B清单中SO_2排放量明显高于REASv2.1与HTAP_v2清单,尤其在浙北和沿海工业发达地区,导致IN试验模拟的SO_2在这些地区存在明显高估。3组试验模拟的NO_2浓度偏差最小且更为接近(-8%~4%),主要原因是3个清单在浙江省的NOx排放十分一致。从3组试验结果之间的差异程度来看,浙江省范围内PM2.5、PM10、SO_2和NO_2逐日浓度模拟值之间的平均差异程度分别约为14%、15%、51%和16%,最大差异程度分别为69%、78%、137%和132%。月均浓度与逐日浓度的平均差异程度基本一致,但最大差异程度明显更低。总体来看3组试验模拟的PM2.5、PM10与NO_2的差异程度明显低于SO_2。  相似文献   

3.
During 18–23 July 1990, 31 smoke samples were collected from an aircraft flying at low altitudes through the plumes of tropical savanna fires in the Northern Territory, Australia. The excess (above background) mixing ratios of 17 different trace gases including CO2, CO, CH4, several non-methane hydrocarbons (NMHC), CH3CHO, NO x (– NO + NO2), NH3, N2O, HCN and total unspeciated NMHC and sulphur were measured. Emissionratios relative to excess CO2 and CO, and emissionfactors relative to the fuel carbon, nitrogen or sulphur content are determined for each measured species. The emission ratios and factors determined here for carbon-based gases, NO x , and N2O are in good agreement with those reported from other biomass burning studies. The ammonia data represent the first such measurements from savanna fires, and indicate that NH3 emissions are more than half the strength of NO x emissions. The emissions of NO x , NH3, N2O and HCN together represent only 27% of the volatilised fuel N, and are primarily NO x (16%) and NH3 (9%). Similarly, only 56% of the volatilised fuel S is accounted for by our measurements of total unspeciated sulphur.  相似文献   

4.
We present comparisons of the NO2 regional Chemical Transport Model (CTM) simulations over North-eastern North America during the time period from May to September, 1998 with hourly surface NO2 observations and the NO2 columns retrieved from the GOME (Global Ozone Monitoring Experiment) satellite instrument. The model calculations were performed using the Mesoscale Meteorological Model 5 (MM5), Sparse Matrix Operator Kernal Emissions (SMOKE), and Community Multiscale Air Quality (CMAQ) modeling systems, using the emission data from the National Emissions Inventory (NEI) databases of 1996 (U.S.) and 1995 (Canada). The major objectives were to assess the performance of the CMAQ model and the accuracy of the emissions inventories as they affected the simulations of this important short-lived atmospheric species. The modeled (NcMAQ) and measured (NGOME) NO2 column amounts, as well as their temporal variations, agreed reasonably well. The absolute differences (NcMAQ-NGOME) across the domain were between ±3.0×10^15 molecules cm^-2, but they were less than ±1.0×10^15 molecules cm^-2 over the majority (80%) of the domain studied. The overall correlation coefficient between the measurements and the simulations was 0.75. The differences were mainly ascribed to a combination of inaccurate emission data for the CTM and the uncertainties in the GOME retrievals. Of these, the former were the more easily identifiable.  相似文献   

5.
Simultaneous observations of surface ozone (O3) with its precursors namely, carbon monoxide (CO) and oxides of nitrogen (NOx) have been taken on diurnal scale from a tropical semi-urban site, Pune (18.54°N, 73.81°E) in India. We present the data for one year (2003–2004) period to study the salient features of these trace gases. The peak in amplitude of ozone is found during the noontime whereas in CO and NOX it is observed in the morning hours between 0800 and 0900 H. The concentration of these pollutants drop down considerably during southwest monsoon months and the diurnal pattern also become very weak. The diurnal trends of these gases are found to be different for different seasons, which are specific to the receptor site. Model simulations using 3-D chemical-transport model with regional emission inventories and observed winds have also been carried out. The comparison of model results with observations, on seasonal basis yielded a reasonable qualitative agreement. The relative role of local emissions and long range transport in the diurnal pattern for different seasons has been outlined, which reveals that the ozone is highly influenced by regional/long range transport in this region. The effect of precursor amounts in the morning on afternoon ozone peak levels has been investigated using the lag correlation study, which reveals that a time lag of 5–7 h is required for most of these precursor gases to photo-chemically produce ozone to its maximum potential. Results are discussed in the light of available topographic and meteorological conditions.  相似文献   

6.
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980?C2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50?C80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.  相似文献   

7.
The relationship between the emission of ozone precursors and the chemical production of tropospheric ozone(O3) in the Pearl River Delta Region(PRD) was studied using numerical simulation.The aim of this study was to examine the volatile organic compound(VOC)-or nitrogen oxide(NOx =NO+NO2)limited conditions at present and when surface temperature is increasing due to global warming,thus to make recommendations for future ozone abatement policies for the PRD region.The model used for this application is the U.S.Environmental Protection Agency’s(EPA’s) third-generation air-quality modeling system;it consists of the mesoscale meteorological model MM5 and the chemical transport model named Community Multi-scale Air Quality(CMAQ).A series of sensitivity tests were conducted to assess the influence of VOC and NOx variations on ozone production.Tropical cyclone was shown to be one of the important synoptic weather patterns leading to ozone pollution.The simulations were based on a tropicalcyclone-related episode that occurred during 14-16 September 2004.The results show that,in the future,the control strategy for emissions should be tightened.To reduce the current level of ozone to meet the Hong Kong Environmental Protection Department(EPD) air-quality objective(hourly average of 120 ppb),emphasis should be put on restricting the increase of NOx emissions.Furthermore,for a wide range of possible changes in precursor emissions,temperature increase will increase the ozone peak in the PRD region;the areas affected by photochemical smog are growing wider,but the locations of the ozone plume are rather invariant.  相似文献   

8.
This paper presents the application of a Monte-Carlo simulation for assessing the uncertainties of German 2005 emissions of particulate matter (PM10 & PM2.5) and aerosol precursors (SO2, NOx, NH3 and NMVOC) carried out in the PAREST (PArticle REduction STrategies) research project. For the uncertainty analysis the German Federal Environment Agency’s emission inventory was amended and integrated with a model on the disaggregation of energy balance data. A series of algorithms was developed in order to make efficient and pragmatic use of available literature and expert judgement data for uncertainties of emission model input data. The inventories for PM10 (95 %-confidence interval: ?16 %/+23 %), PM2.5 (?15 %/+19 %) and NOx (?10 %/+23 %) appear most uncertain, while the inventories for SO2 (?9 %/+9 %), NMVOC (?10 %/+12 %) and NH3 (?13 %/+13 %) show a higher accuracy. The source categories adding the most relevant contributions to overall uncertainty vary across the pollutants and comprise agriculture, mobile machinery in agriculture and forestry, construction sites, small businesses/carpentries, cigarette smoke and fireworks, road traffic, solvent use and stationary combustion. The PAREST results on relative uncertainties have been quoted in the German Informative Inventory Reports since 2012. A comparison shows that the PAREST results for Germany are within the range of (for NH3: close below) other European countries’ results on air pollutant inventory uncertainties as reported in the 2013 Informative Inventory Reports.  相似文献   

9.
Three online coupled chemical transport model simulations were analyzed for three summer months of 2015 in Poland. One of them was run with default emission inventory, the other two with NOx and VOC emissions reduced by 30%, respectively. Obtained ozone concentrations were evaluated with data from air quality measurement stations and ozone sensitivity to precursor emissions was estimated by ozone concentration differences between simulations and with the use of indicator ratios. They were calculated based on modeled mixing ratios of ozone, total reactive nitrogen and its components, nitric acid and hydrogen peroxide. The results show that the model overestimates ozone concentrations with the largest errors in the morning and evening, which is primarily related to the way vertical mixing is resolved by the model. Better model performance for ozone is achieved in rural than urban environment, as PBL and mixing mechanisms play more significant role in urban areas. Modeled ozone shows mixed sensitivity to precursor concentrations, similarly to other European regions, but indicator ratios have different values than are found in literature, particularly H2O2/HNO3 is larger than in southern Europe. However, indicator ratios often differ between locations and transition values need to be established individually for a given region.  相似文献   

10.
In 1997 and 1998 several field campaigns for monitoring non-methane volatile organic compounds (NMVOCs) and nitrogen oxides (NOx) were carried out in a road traffic tunnel and in the city center of Wuppertal, Germany. C2–C10 aliphatic and aromatic hydrocarbons were monitored using a compact GC instrument. DOAS White and long path systems were used to measure aromatic hydrocarbons and oxygenated aromatic compounds. A formaldehyde monitor was used to measure formaldehyde. Chemiluminescence NO analysers with NO2 converter were used for measuring NO and NO2. The high mixing ratios of the NMVOCs observed in the road traffic tunnel, especially 2.9 ppbv phenol, 1.5ppbv para-cresol and 4.4 ppbv benzaldehyde, in comparison with themeasured background concentration clearly indicate that these compounds were directly emitted from road traffic. Para-Cresol was for the first timeselectively detected as primary pollutant from traffic. From the measured data a NMVOC profile of the tunnel air and the city air, normalised to benzene (ppbC/ppbC), was derived. For most compounds the observed city air NMVOC profile is almost identical with that obtained in the traffic tunnel. Since benzene originates mainly from road traffic emission, the comparison of the normalised emission ratios indicate that the road traffic emissions in Wuppertal have still the largest impact on the city air composition, which is in contrast to the German emission inventory. In both NMVOC profiles, aromatic compounds have remarkably large contributions of more than 40 ppbC%. In addtion, total NMVOC/NOx ratios from 0.6 up to 3.0ppbC/ppb in the traffic tunnel air and 3.4± 0.5 in the city air of Wuppertal were obtained. From the observed para-cresol/toluene and ortho-cresol/toluene ratios in the city air, evidence was found thatalso during daytime NO3 radical reactions play an important role in urban air.  相似文献   

11.
We investigate the composition of 63 C2-C10 nonmethane hydrocarbons (NMHCs), methane (CH4) and carbon monoxide (CO), in Jeddah, Mecca, and Madina (Saudi Arabia), in Lahore, (Pakistan), and in Singapore. We established a database with which to compare and contrast NMHCs in regions where ambient levels and emissions are poorly characterized, but where conditions are favorable to the formation of tropospheric ozone, and where measurements are essential for improving emission inventories and modeling. This dataset will also serve as a base for further analysis of air pollution in Western Saudi Arabia including, but not limited to, the estimation of urban emissions and long range pollution transport from these regions. The measured species showed enhanced levels in all Saudi Arabian cities compared to the local background but were generally much lower than in Lahore. In Madina, vehicle exhaust was the dominant NMHC source, as indicated by enhanced levels of combustion products and by the good correlation between NMHCs and CO, while in Jeddah and Mecca a combination of sources needs to be considered. Very high NMHC levels were measured in Lahore, and elevated levels of CH4 in Lahore were attributed to natural gas. When we compared our results with 2010 emissions from the MACCity global inventory, we found discrepancies in the relative contribution of NMHCs between the measurements and the inventory. In all cities, alkenes (especially ethene and propene) dominated the hydroxyl radical (OH) reactivity (k OH) because of their great abundance and their relatively fast reaction rates with OH.  相似文献   

12.
Summary The atmospheric concentrations of several primary species: NO, NO2, NOx, CO, SO2, reactive hydrocarbons (ROG) and other 15 atmospheric and meteorological variables have been measured at several locations in Córdoba city, Argentina since June 1995. The measurements are carried out using two mobile stations to cover several important areas of Córdoba. The objective of this work is to estimate the effects of meteorology and urban structure on the air quality levels for this city using simple statistics. We analyze the correlation between primary pollutants (CO and NOx) and site locations of the air quality monitoring stations (AQMS) during the whole 1995 field campaign. In this study we take the measured data for primary pollutants and group them by location and time of the year. The results of this work may be useful to forecast air pollution episodes. Also we can get indirect information about emissions and maybe identify source characteristics. Once the influences of topography, meteorology, and land use will be fully characterized, the existing monitoring data will be used to do air quality modeling analysis and to select monitoring locations. The use of mobile stations instead of stationary ones at this stage is justified because of limited funding. Therefore, it is a valid option to decide in the future the additional instrumentation required to characterize completely the atmospheric urban area.With 5 Figures  相似文献   

13.
Recent observations suggest that the abundance of ozone between 2 and 8 km in the Northern Hemisphere mid-latitudes has increased by about 12% during the period from 1970 to 1981. Earlier estimates were somewhat more conservative suggesting increases at the rate of 7% per decade since the start of regular observations in 1967. Previous photochemical model studies have indicated that tropospheric ozone concentrations would increase with increases in emissions of CO, CH4 and NO x . This paper presents an analysis of tropospheric ozone which suggests that a significant portion of its increase may be attributed to the increase in global anthropogenic NO x emissions during this period while the contribution of CH4 to the increase is quite small. Two statistical models are presented for estimating annual global anthropogenic emissions of NO x and are used to derive the trend in the emissions for the years 1966–1980. These show steady increase in the emissions during this interval except for brief periods of leveling off after 1973 and 1978. The impact of this increase in emissions on ozone is estimated by calculations with a onedimensional (latitudinal) model which includes coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NO x emissions appropriate for 1966 and 1980 indicate an ozone increase of 8–11% in the Northern Hemisphere, a result which is compatible with the rise in ozone suggested by the observations.  相似文献   

14.
Using the global chemistry and transport model MOZART,the simulated distributions of tropospheric hydroxyl free radicals(OH) over China and its sensitivities to global emissions of carbon monoxide(CO),nitrogen oxide(NO x),and methane(CH 4) were investigated in this study.Due to various distributions of OH sources and sinks,the concentrations of tropospheric OH in east China are much greater than in west China.The contribution of NO + perhydroxyl radical(HO 2) reaction to OH production in east China is more pronounced than that in west China,and because of the higher reaction activity of non-methane volatile organic compounds(NMVOCs),the contributions to OH loss by NMVOCs exceed those of CO and take the dominant position in summer.The results of the sensitivity runs show a significant increase of tropospheric OH in east China from 1990 to 2000,and the trend continues.The positive effect of double emissions of NO x on OH is partly offset by the contrary effect of increased CO and CH 4 emissions:the double emissions of NO x will cause an increase of OH of 18.1%-30.1%,while the increases of CO and CH 4 will cause a decrease of OH of 12.2%-20.8% and 0.3%-3.0%,respectively.In turn,the lifetimes of CH 4,CO,and NO x will increase by 0.3%-3.1% with regard to double emissions of CH 4,13.9%-26.3% to double emissions of CO and decrease by 15.3%-23.2% to double emissions of NO x.  相似文献   

15.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

16.
Several years of continuous measurements of surfaceozone at Norwegian monitoring sites are studied in aclimatological way. The monitoring sites are at rurallocations extending from 58°N, a few hundredkilometers from the European continent and into theArctic at 79°N. The ozone observations are sorted intoclasses of integrated NOx emissions along 96 h backtrajectories. The average seasonal cycles of ozone areestimated for each class separately. The differencesindicate the change from the background air due toanthropogenic emissions. The average seasonal cycle ofozone in the cleanest air masses showed a maximum inspring and a minimum during summer and autumn at allsites, but the spring maximum was more pronounced atthe southernmost locations. Polluted air masses showedan ozone deficit during winter and a surplus duringsummer. The deviation from the background was clearlylinked to the integrated NOx emission along thetrajectories. In summer the calculations indicate thatthe number of ozone molecules formed per NOx moleculedrops with increasing emissions. The average seasonalcycle of ozone at Birkenes for different transportsectors indicate that the most pronounced ozoneformation takes place in air masses from E-Europe/Russia.  相似文献   

17.
中美大气化学联合考察实验结果的初步分析与比较   总被引:1,自引:0,他引:1  
根据临安区域本底站观测资料分析结果得出,中国中纬度地区秋、冬季O3及其前体物NOx等浓度偏高,可以对农作物和地表生态系统产生影响.观测结果表明:近地层大气O3浓度主要决定于地面总辐射量控制下的光化学反应过程;O3的生成受到前体物NOx的控制,但O3与NOx存在着明显的非线性关系.从PEM-WESTA和B的实验及1995年的观测资料表明,O3的生成效率随着NOx浓度的增大而减小.尽管O3的生成速率秋季比冬季的大,但由于秋季较高的NOx抑制了过氧基的生成,因此冬季O3的累积量几乎可以和秋季相比拟.在临安观测的NMHC和NOx的比值比国外同纬度地区测值要大.这说明在临安本底站O3的光化学生成中,NMHC不是控制物种.从而提示我们,在这些季节临安O3光化学产物能够被NOx浓度所控制.中美大气化学联合考察(PEM-WEST-B)实验期间,台湾省的卡盯站SO2的平均浓度为0.29ppb,O3的平均浓度为42.2ppb,可以认为此值为低纬度海岛的本底值.1994年PEM-WEST-B实验期间临安站的观测资料和台湾省的卡盯站资料相比,临安站SO2的浓度约为卡盯站SO2浓度的50倍左右,从而可以看出人类活动对大气本底的显着影响.  相似文献   

18.
以武汉市为研究区域,基于实地调查获得典型行业污染源活动水平,以大气污染物排放清单编制技术指南为参考,利用排放因子法建立2014年武汉市大气污染源排放清单,并结合经纬度、人口密度分布、土地利用类型、道路长度等数据将排放清单进行了3 km×3 km网格化处理.结果表明,2014年武汉市SO2、NOx、PM10、PM2.5、CO、BC、OC、VOCs和NH3排放量分别为10.3、17.0、16.3、7.1、63.1、0.6、0.4、19.8和1.6万t.固定燃烧源为SO2排放的主要来源,其贡献率约64%;移动源为NOx的主要来源,其贡献率约51%;颗粒物排放主要来源于扬尘源和工艺过程源;CO和VOCs主要来源于工艺过程源,BC和OC排放均以移动源和生物质燃烧源为主,NH3排放主要来自农业源.污染物排放主要集中在青山区至新洲区一带.  相似文献   

19.
In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NO x concentrations are also high in eastern China. The high CO and NO x concentrations produce modest levels of O3 concentrations during summer (about 40 to 50 ppbv) and very low O3 during winter (about 10 to 20 ppbv) in eastern China. The calculated NO2 column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O3 is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO2 has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NO x , which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO x concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O3 concentrations. During winter, the local emissions reduce the surface O3 concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O3 concentration in eastern China.  相似文献   

20.
Measurements and model developments with the objective to improve the quality and resolution of estimations of anthropogenic emissions are described. Measurement results on a chassis dynamometer were used to determine VOC profiles for exhaust gas emissions of passenger cars for different vehicle and fuel types and different driving modes. Further measurements resulted in emission factors and VOC profiles for lignite burning in residential stoves. Using remote sensing techniques benzene emission factors of gas stations and the efficiency of gasoline vapour recovery systems were measured.To improve the quality and the spatial and temporal resolution of emission data, emission models were improved or modified. This was done by elaborating and applying new methods for important emission source categories (e.g., solvent use, road traffic, small combustion) as well as including new data sources in the calculation routines (e.g. emission statements, land use data, import/export indices of solvents). Simultaneously considerable progress was made improving temporal and spatial allocation functions and VOC profiles. With these improvements a large number of anthropogenic emission data sets for 14 different grid projections in Germany and Europe have been generated. An emission scenario for Germany for 2010 suggests that considering air quality directives from the EU and Germany which are in force or in pipeline, German emissions of VOC and NOx will decrease, but still exceed the national emission ceilings of the EU-NEC directive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号