首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present evidence of a large lake (Glacial Lake Victoria) that existed in Victoria Valley in the dry valleys region of Antarctica between at least 20 000 and 8600 14C yr BP. At its highstands, Glacial Lake Victoria covered 100 km2 and was ca. 200 m deep. The chronology for lake‐level changes comes from 87 AMS radiocarbon dates of lacustrine algae preserved in deltas and glaciolacustrine deposits that extend up to 185 m above present‐day lakes on the valley floor. The existence of Glacial Lake Victoria, as well as other large lakes in the dry valleys, indicates a climate regime significantly different from that of today at the last glacial maximum and in the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Lake sediment, glacier extent and tree rings were used to reconstruct Holocene climate changes from Goat Lake at 550 m asl in the Kenai Mountains, south‐central Alaska. Radiocarbon‐dated sediment cores taken at 55 m water depth show glacial‐lacustrine conditions until about 9500 cal. yr BP, followed by organic‐rich sedimentation with an overall increasing trend in organic matter and biogenic silica content leading up to the Little Ice Age (LIA). Through most of the Holocene, the northern outlet of the Harding Icefield remained below the drainage divide that currently separates it from Goat Lake. A sharp transition from gyttja to inorganic mud about AD 1660 signifies the reappearance of glacier meltwater into Goat Lake during the LIA, marking the maximum Holocene (postglacial) extent. Meltwater continued to discharge into the lake until about AD 1900. A 207 yr tree‐ring series from 25 mountain hemlocks growing in the Goat Lake watershed correlates with other regional tree‐ring series that indicate an average summer temperature reduction of about 1°C during the 19th century compared with the early–mid 20th century. Cirque glaciers around Goat Lake reached their maximum LIA extent in the late 19th century. Assuming that glacier equilibrium‐line altitudes (ELA) are controlled solely by summer temperature, then the cooling of 1°C combined with the local environmental lapse rate would indicate an ELA lowering of 170 m. In contrast, reconstructed ELAs of 12 cirque glaciers near Goat Lake average only 34 ± 18 m lower during the LIA. The restricted ELA lowering can be explained by a reduction in accumulation‐season precipitation caused by a weakening of the Aleutian low‐pressure system during the late LIA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south‐central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low‐relief ice‐walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice‐walled lake deposit. The semi‐circular basin is about 0.72 km wide and formed of a 4‐ to 16‐m‐thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270 ± 50 14C a BP (21 810 cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil‐bearing horizon was 17 770 ± 40 14C a BP (21 180 cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice‐walled lake succession persisted for between 210 and 860 cal. a (modal value: 610 cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice‐walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice‐walled lake sedimentation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Analyses of sediment cores from two lakes in the central Brooks Range provide temperature and moisture balance information for the past 8500 cal yr at century-scale resolution. Two methods of oxygen isotope analysis are used to reconstruct past changes in the effective moisture (precipitation minus evaporation) and temperature. Effective moisture is inferred from oxygen isotope ratios in sediment cellulose from Meli Lake (area 0.13 km2, depth 19.4 m). The lake has a low watershed-to-lake-area ratio (7) and significant evaporation relative to input. Summer temperature shifts are based on oxygen isotope analyses of endogenic calcite from Tangled Up Lake (area 0.25 km2, depth 3.5 m). This basin has a larger watershed-to-lake-area ratio (91) and less evaporation relative to input. Sediment oxygen isotope analyses from the two sites indicate generally more arid conditions than present prior to 6000 cal yr B.P. Subsequently, the region became increasingly wet. Temperature variability is recorded minimally at centennial scale resolution with values that are generally cool for the past 6700 cal yr. The timing and direction of climate variability indicated by the oxygen isotope time series from Meli and Tangled Up lakes are consistent with previously established late Holocene glacier advances at 5000 cal yr B.P. in the central Brooks Range, and high lake-levels at Birch Lake since 5500 cal yr B.P. This unique use of oxygen isotopes reveals both moisture balance and temperature histories at previously undetected high-resolution temporal scales for northern Alaska during the middle to late Holocene.  相似文献   

5.
Lake Chungará (18°15′S, 69°09′W, 4520 m above sea‐level) is the largest (22·5 km2) and deepest (40 m) lacustrine ecosystem in the Chilean Altiplano and its location in an active volcanic setting, provides an opportunity to evaluate environmental (volcanic vs. climatic) controls on lacustrine sedimentation. The Late Quaternary depositional history of the lake is reconstructed by means of a multiproxy study of 15 Kullenberg cores and seismic data. The chronological framework is supported by 10 14C AMS dates and one 230Th/234U dates. Lake Chungará was formed prior to 12·8 cal kyr bp as a result of the partial collapse of the Parinacota volcano that impounded the Lauca river. The sedimentary architecture of the lacustrine succession has been controlled by (i) the strong inherited palaeo‐relief and (ii) changes in the accommodation space, caused by lake‐level fluctuations and tectonic subsidence. The first factor determined the location of the depocentre in the NW of the central plain. The second factor caused the area of deposition to extend towards the eastern and southern basin margins with accumulation of high‐stand sediments on the elevated marginal platforms. Synsedimentary normal faulting also increased accommodation and increased the rate of sedimentation in the northern part of the basin. Six sedimentary units were identified and correlated in the basin mainly using tephra keybeds. Unit 1 (Late Pleistocene–Early Holocene) is made up of laminated diatomite with some carbonate‐rich (calcite and aragonite) laminae. Unit 2 (Mid‐Holocene–Recent) is composed of massive to bedded diatomite with abundant tephra (lapilli and ash) layers. Some carbonate‐rich layers (calcite and aragonite) occur. Unit 3 consists of macrophyte‐rich diatomite deposited in nearshore environments. Unit 4 is composed of littoral sediments dominated by alternating charophyte‐rich and other aquatic macrophyte‐rich facies. Littoral carbonate productivity peaked when suitable shallow platforms were available for charophyte colonization. Clastic deposits in the lake are restricted to lake margins (Units 5 and 6). Diatom productivity peaked during a lowstand period (Unit 1 and subunit 2a), and was probably favoured by photic conditions affecting larger areas of the lake bottom. Offshore carbonate precipitation reached its maximum during the Early to Mid‐Holocene (ca 7·8 and 6·4 cal kyr bp ). This may have been favoured by increases in lake solute concentrations resulting from evaporation and calcium input because of the compositional changes in pyroclastic supply. Diatom and pollen data from offshore cores suggest a number of lake‐level fluctuations: a Late Pleistocene deepening episode (ca 12·6 cal kyr BP), four shallowing episodes during the Early to Mid‐Holocene (ca 10·5, 9·8, 7·8 and 6·7 cal kyr BP) and higher lake levels since the Mid‐Holocene (ca 5·7 cal kyr BP) until the present. Explosive activity at Parinacota volcano was very limited between c. >12·8 and 7·8 cal kyr bp . Mafic‐rich explosive eruptions from the Ajata satellite cones increased after ca 5·7 cal kyr bp until the present.  相似文献   

6.
Lake Ladoga in northwestern Russia is Europe's largest lake. The postglacial history of the Ladoga basin is for the first time documented continuously with high temporal resolution in the upper 13.3 m of a sediment core (Co1309) from the northwestern part of the lake. We applied a multiproxy approach including radiographic imaging, (bio‐)geochemical and granulometric analyses. Age control was established combining radiocarbon dating with varve chronology, the latter anchored to a correlated radiocarbon age from a lake close by. The age‐depth model reveals the onset of glacial varve sedimentation at 13 910±140 cal. a BP, when Lake Ladoga was part of the Baltic Ice Lake. Linear extrapolation of published retreat rates of the Scandinavian Ice Sheet provides a formation age of the Luga moraine close to Lake Ladoga's southern shore of 14.5–15.9 cal. ka BP, older than previously assumed. Varve sedimentation covers the Bølling/Allerød interstadial, the Younger Dryas stadial and the Early Holocene. Varve‐thickness variations, conjoined with grain‐size and geochemical variations, inform about the relative position of the Scandinavian Ice Sheet and the climate during the deglaciation phase. The upper limit of the varved succession marks the change from glaciolacustrine to normal lacustrine sedimentation and post‐dates the drainage of the Baltic Ice Lake as well as the formation of the Salpausselkä II moraine north of Lake Ladoga, by c. 250 years. The Holocene sediment record is divided into three periods in the following order: (i) a lower transition zone between the Holocene boundary and c. 9.5 cal. ka BP, characterized by mostly massive sediments with low organic content, (ii) a phase with increased organic content from c. 9.5 to 4.5 cal. ka BP corresponding to the Holocene Thermal Maximum, and (iii) a phase with relatively stable sedimentation in a lacustrine environment from c. 4.5 cal. ka BP until present.  相似文献   

7.
A pollen‐based study from Tiny Lake in the Seymour‐Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740 ± 70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860 ± 50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour‐Belize Inlet Complex, on a meso‐ to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour‐Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi‐permanent air mass. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
西藏纳木错晚更新世以来古降水量变化及其环境响应   总被引:4,自引:0,他引:4  
通过对西藏面积最大(1940km2)和海拔最高(4718m)的大湖-纳木错的调查,发现纳木错周缘有大面积分布的湖相沉积。U系法和14C法测年结果表明,纳木错沿岸湖相沉积的时代为晚更新世和全新世。根据纳木错周缘不同时代湖相沉积物的范围分布的变化,探讨了湖泊演化,计算出纳木错流域古降水量。研究结果,本区自晚更新世以来气候环境由湿润转向干旱,自全新世以来降雨量呈下降趋势。   相似文献   

9.
Lake Estanya is a small (19 ha), freshwater to brackish, monomictic lake formed by the coalescence of two karstic sinkholes with maximum water depths of 12 and 20 m, located in the Pre‐Pyrenean Ranges (North‐eastern Spain). The lake is hydrologically closed and the water balance is controlled mostly by groundwater input and evaporation. Three main modern depositional sub‐environments can be recognized as: (i) a carbonate‐producing ‘littoral platform’; (ii) a steep ‘talus’ dominated by reworking of littoral sediments and mass‐wasting processes; and (iii) an ‘offshore, distal area’, seasonally affected by anoxia with fine‐grained, clastic sediment deposition. A seismic survey identified up to 15 m thick sedimentary infill comprising: (i) a ‘basal unit’, seismically transparent and restricted to the depocentres of both sub‐basins; (ii) an ‘intermediate unit’ characterized by continuous high‐amplitude reflections; and (iii) an ‘upper unit’ with strong parallel reflectors. Several mass‐wasting deposits occur in both sub‐basins. Five sediment cores were analysed using sedimentological, microscopic, geochemical and physical techniques. The chronological model for the sediment sequence is based on 17 accelerator mass spectrometry 14C dates. Five depositional environments were characterized by their respective sedimentary facies associations. The depositional history of Lake Estanya during the last ca 21 kyr comprises five stages: (i) a brackish, shallow, calcite‐producing lake during full glacial times (21 to 17·3 kyr bp ); (ii) a saline, permanent, relatively deep lake during the late glacial (17·3 to 11·6 kyr bp ); (iii) an ephemeral, saline lake and saline mudflat complex during the transition to the Holocene (11·6 to 9·4 kyr bp ); (iv) a saline lake with gypsum‐rich, laminated facies and abundant microbial mats punctuated by periods of more frequent flooding episodes and clastic‐dominated deposition during the Holocene (9·4 to 0·8 kyr bp ); and (v) a deep, freshwater to brackish lake with high clastic input during the last 800 years. Climate‐driven hydrological fluctuations are the main internal control in the evolution of the lake during the last 21 kyr, affecting water salinity, lake‐level changes and water stratification. However, external factors, such as karstic processes, clastic input and the occurrence of mass‐flows, are also significant. The facies model defined for Lake Estanya is an essential tool for deciphering the main factors influencing lake deposition and to evaluate the most suitable proxies for lake level, climate and environmental reconstructions, and it is applicable to modern karstic lakes and to ancient lacustrine formations.  相似文献   

10.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Radiocarbon‐dated sediment cores from six lakes in the Ahklun Mountains, south‐western Alaska, were used to interpolate the ages of late Quaternary tephra beds ranging in age from 25.4 to 0.4 ka. The lakes are located downwind of the Aleutian Arc and Alaska Peninsula volcanoes in the northern Bristol Bay area between 159° and 161°W at around 60°N. Sedimentation‐rate age models for each lake were based on a published spline‐fit procedure that uses Monte Carlo simulation to determine age model uncertainty. In all, 62 14C ages were used to construct the six age models, including 23 ages presented here for the first time. The age model from Lone Spruce Pond is based on 18 ages, and is currently the best‐resolved Holocene age model available from the region, with an average 2σ age uncertainty of about ± 109 years over the past 14.5 ka. The sedimentary sequence from Lone Spruce Pond contains seven tephra beds, more than previously found in any other lake in the area. Of the 26 radiocarbon‐dated tephra beds at the six lakes and from a soil pit, seven are correlated between two or more sites based on their ages. The major‐element geochemistry of glass shards from most of these tephra beds supports the age‐based correlations. The remaining tephra beds appear to be present at only one site based on their unique geochemistry or age. The 5.8 ka tephra is similar to the widespread Aniakchak tephra [3.7 ± 0.2 (1σ) ka], but can be distinguished conclusively based on its trace‐element geochemistry. The 3.1 and 0.4 ka tephras have glass major‐ and trace‐element geochemical compositions indistinguishable from prominent Aniakchak tephra, and might represent redeposited beds. Only two tephra beds are found in all lakes: the Aniakchak tephra (3.7 ± 0.2 ka) and Tephra B (6.1 ± 0.3 ka). The tephra beds can be used as chronostratigraphic markers for other sedimentary sequences in the region, including cores from Cascade and Sunday lakes, which were previously undated and were analyzed in this study to correlate with the new regional tephrostratigraphy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Tephra-fall deposits from Cook Inlet volcanoes were detected in sediment cores from Tustumena and Paradox Lakes, Kenai Peninsula, Alaska, using magnetic susceptibility and petrography. The ages of tephra layers were estimated using 21 14C ages on macrofossils. Tephras layers are typically fine, gray ash, 1-5 mm thick, and composed of varying proportions of glass shards, pumice, and glass-coated phenocrysts. Of the two lakes, Paradox Lake contained a higher frequency of tephra (0.8 tephra/100 yr; 109 over the 13,200-yr record). The unusually large number of tephra in this lake relative to others previously studied in the area is attributed to the lake's physiography, sedimentology, and limnology. The frequency of ash fall was not constant through the Holocene. In Paradox Lake, tephra layers are absent between ca. 800-2200, 3800-4800, and 9000-10,300 cal yr BP, despite continuously layered lacustrine sediment. In contrast, between 5000 and 9000 cal yr BP, an average of 1.7 tephra layers are present per 100 yr. The peak period of tephra fall (7000-9000 cal yr BP; 2.6 tephra/100 yr) in Paradox Lake is consistent with the increase in volcanism between 7000 and 9000 yr ago recorded in the Greenland ice cores.  相似文献   

13.
Comparison of catchment geomorphology and lithostratigraphical analysis of sediments in two small neighbouring alpine lakes show that the minerogenic influx into the lakes has varied significantly during the Holocene, despite similarities in environmental setting. One lake contains a homogeneous organic‐rich sediment sequence whereas the sediment of the other lake is laminated and has a higher minerogenic content. X‐ray radiographs are used to visualise lithostratigraphical structures and provide high‐resolution density data. We find that moderate differences in geomorphology and process activity in the lakeshore region around alpine lakes can significantly affect the lake sediment composition. Minerogenic sediment accumulation rates vary strongly over time, owing to different depositional processes, which complicate temporal reconstructions. We also find that non‐glacial processes deposit minerogenic sediment layers with similar characteristics (high density, low organic content) as layers interpreted as having a glaciofluvial origin. This has implications for palaeoclimate studies based on proglacial lacustrine sediment. Our results indicate that erosion of surface sediments in the catchments characterised the early Holocene. A low and constant minerogenic inflow indicates that stable environmental conditions (with little fluvial erosion) were established in the catchments during the middle Holocene. The variability in sediment composition increased again in the late Holocene, possibly as a result of short‐term climate fluctuations superimposed on a general climate deterioration trend. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The Pingualuit Crater was formed by a meteoritic impact ca. 1.4 million years ago in northernmost Ungava (Canada). Due to its geographical position near the center of successive North American ice sheets and its favorable morphometry, the Pingualuit Crater Lake (water depth = 246 m) promises to yield a unique continuous sedimentary sequence covering several glacial/interglacial cycles in the terrestrial Canadian Arctic. In this paper, we suggest the existence of a subglacial lake at least during the Last Glacial Maximum (LGM) by hydraulic potential modeling using LGM ice-surface elevation and bed topography derived from a digital elevation model. These results support the hypothesis that the bottom sediments of the Crater Lake escaped glacial erosion and may contain a long-term continental sedimentary sequence. We also present the stratigraphy of a 9 m-long core retrieved from the deep basin of the lake as well as a multiproxy reconstruction of its deglacial and postglacial history. The base of the core is formed by very dense diamicton reflecting basal melt-out environments marking the end of subglacial conditions at the coring site. The overlying finely laminated silt are related to the onset of proglacial conditions characterized by extremely low lacustrine productivity. Infra Red Stimulated Luminescence and AMS 14C dating, as well as biostratigraphic data indicate sediment mixing between recent (e.g. Holocene) and much older (pre- to mid-Wisconsinan) material reworked by glacier activity. This process prevents the precise dating of these sediments that we interpret as being deposited just before the final deglaciation of the lake. Two finer grained and organic-rich intervals reflect the inception of lacustrine productivity resulting from the cessation of glacial meltwater inputs and ice-free periods. The lower organic interval corresponds to the early postglacial period (6850–5750 cal BP) and marks the transition between proglacial and postglacial conditions during the Holocene Thermal Maximum, while the uppermost organic-rich core section represents late Holocene sediments (~4200–600 cal BP). The organic intervals are separated by a basin-scale erosive slide occurring around 4200 cal BP and likely related to 1) a seismic event due to the glacio-isostatic rebound following the last deglaciation or 2) slope instabilities associated with rapid discharge events of the lake.  相似文献   

15.
The results of a seismic stratigraphic analysis of a closed lake basin, Lago Cardiel, in southernmost South America are reported. Very few high-resolution, continental records spanning the Late Quaternary have been obtained from this region. Seismic sequence stratigraphic analysis allows a reconstruction of lake level variations. Two major hiatuses of unknown age occurred during the early evolution of the basin with the deposition of an alluvial fan in a restricted area in the intervening time period. Following the development of a relatively shallow lake during the late Pleistocene and a short desiccation pulse around 11 220 14C yr BP, a transgression of over 135 m occurred at the beginning of the Holocene. The transgression was associated with the formation of beach ridges preserved in the lake stratigraphy on the floor of the modern Lago Cardiel at four different elevations. The preservation of largely unreworked beach ridges indicates a stepwise rise in the lake level. There is no seismic evidence of a major lowering of the lake below modern level during the entire Holocene. Deposition since the mid-Holocene is marked by strong lateral differences in sediment accumulation with a depocentre slightly to the north of the basin midpoint and a pronounced mounded distribution. Seismic reflection geometries, as well as sedimentological characteristics indicate a lacustrine contourite drift covering an area of 80–100 km2. As Lago Cardiel is under the influence of westerly winds, these most likely drove lake circulation. The identification of drowned beach ridges and of contourite drifts illustrates that high-resolution seismic stratigraphy is not only a powerful tool in reconstructing past lake level elevations for closed lake basins, but it can also provide information about the rate of lake level changes and the presence and strength of lake currents.  相似文献   

16.
This study of five small (<3.0 ha) lakes in southwestern Greenland examines the veracity of branched glycerol dialkyl glycerol tetraethers (br GDGTs) as a temperature proxy in lacustrine systems. The proximity (<5 km) of the lakes suggests that their temperature history, and thus their br GDGT records, should be similar. Distributions of br GDGTs in (i) surface sediments from all five lakes, (ii) 14C-dated sediment cores from two lakes (Upper and Lower EVV Lakes) and (iii) soil samples from the area surrounding the lakes were examined. The temporal records of br GDGT-based temperature for the two cores exhibited both similarities and major discrepancies. The differences between the paleotemperature records for the two lakes suggest that br GDGTs are not solely soil-derived, reflecting air temperature, but also indicate an additional br GDGT contribution from another source. Among the broader suite of lake sediments, there was a strong correlation (R2 0.987) between br GDGT-based surface sediment temperatures and measured summer bottom water temperatures for the four lakes with hypoxic/anoxic bottom waters, including Upper EVV Lake. The correlation suggests production of br GDGTs by anaerobic bacteria within the bottom water and/or sediment–water interface, reflecting environmental temperature for the individual lakes and augmenting the uniform, soil-derived signal. Hence, assessment of br GDGTs in Greenland lake sediments provides evidence for their origin from anaerobic autochthonous bacteria and indicates that interpretation of lacustrine br GDGT-based paleotemperature records requires contextual knowledge of individual lake systems and potential source(s) of sedimentary br GDGTs.  相似文献   

17.
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691~505 kaBP middle Pleistocene ice age, 75–40 kaBP the early stage of last glacier, 27–8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn’t erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn’t form stable lake.  相似文献   

18.
This paper presents results from the numerical modelling of the transport of atmospheric noble gases (He, Ne, Ar, Kr, Xe), tritiated water and 3He produced by radioactive decay of 3H, in unconsolidated lacustrine sediment. Two case studies are discussed: (1) the evolution of 3H and 3He concentrations in the sediment porewater of Lake Zug (Switzerland) from 1953 up to the present; and (2) the response of dissolved atmospheric noble gas concentrations in the sediment porewater of a subtropical lake to an abrupt climatic change that occurred some 10 kyr before the present. (1) Modelled 3H and 3He porewater concentrations are compared with recent data from Lake Zug. An estimate of the effective diffusion coefficients in the sediment porewater is derived using an original approach which is also applicable also to lakes for which the historical 3H and 3He concentrations in the water column are unknown. (2) The air/water partitioning of atmospheric noble gases is sensitive to water temperature and salinity, and thus provides a mechanism by which these environmental variables are recorded in the concentrations of atmospheric noble gases in lakes. We investigate the feasibility of using noble gas concentrations in the porewater of lacustrine sediments as a proxy for palaeoenvironmental conditions in lakes. Numerical modelling shows that heavy noble gases in sediment porewater, because of their comparatively small diffusion coefficients and the strong temperature sensitivity of their equilibrium concentrations, can preserve concentrations corresponding to past lake temperatures over times on the order of 10 kyr. Noble gas analysis of sediment porewaters therefore promises to yield valuable quantitative information on the past environmental states of lakes.  相似文献   

19.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
《Sedimentology》2018,65(5):1413-1446
Turbidites within Holocene lacustrine sediment cores occur worldwide and are valued deposits that record a history of earthquakes or storms. Without sedimentary architecture, however, interpretation of the cause, provenance and behaviour of their parent turbidity currents are speculative. Here, these interpretations are made from two‐dimensional ground‐penetrating radar images of ‘shore to shore’ architecture beneath three, previously cored lakes within the low seismicity New England (USA ) region. Shallow depths, low water and sediment conductivities, and signal sensitivity to density contrasts uniquely provided up to 30 m of sediment signal penetration. Core comparisons and signal analysis reveal that most horizons represent multidecimetre‐thick clusters of Holocene turbidites, which are denser than their organic‐rich silt matrix. Some horizons also represent erosional unconformities and sediment bypass interfaces. The key, common, architectural consequences of turbidity current activity include limited foreset progradation, conformably pinched or unconformable layers of organic‐rich sediment onlapped against slopes beneath 5 to 6 m of water, and mounded stratified sediments beneath rises. These features indicate that turbidity currents repeatedly bypassed the same slope without deposition and regardless of dip, and then simultaneously armoured and bypassed inter‐turbidite sediment along rises and basins to provide basinward, generally age‐conformable accumulation. The mounding precludes significant basinward focusing. Variable horizon amplitude suggests metre‐scale changes in armouring density. Unconformities localized near breaks in dip beneath slopes suggest erosive hydraulic jumps. One lake shows evidence of historically maintained channels associated with specific deltas. Shelf strata indicating inland current generation, similar key architecture in other, uncored lakes, countable, lake‐wide horizons, and absent slumps, slides and faults are consistent with storm‐driven turbidity currents, and with previous, core‐based conclusions that severe, Holocene storms were episodic throughout this region. The results generalize marine bypass and armouring to lacustrine settings, and so probably occur worldwide in lakes subject only to storms, including lakes where ground‐penetrating radar may locate core sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号