首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
The Tait-Gibson parameter, B1, and the refractive index of seawater are estimated from binary solution data. The predicted and experimental values agree closely. The maximum deviations, at S = 40‰, are 1.7 bars for B1 and 0.0001 for the refractive index. The results show that binary solution data, analysed on the basis of the Tammann-Tait-Gibson model for aqueous solutions, can be used to predict the properties of seawater of composition different to that of standard seawater.  相似文献   

2.
The activities of most of the major seawater components at 1,001 bars have been estimated, and values for the ions deduced. Equations giving the effect of pressure on the activities of ionic species in seawater (S = 35‰) have been developed. The species covered are: NaSO4?, MgSO40, CaSO40, H+, the free base (NH3), the HCO3?/CO32 activity ratio and the ion activity product of calcium carbonate. Comparison of the latter with the “ideal” solubility of calcite (pure solid in equilibrium with a mixed electrolyte solution) indicates a degree of saturation compatible with the trends indicated by in situ measurements.  相似文献   

3.
Measurements of carbon in marine “net zooplankton” were made by use of a Leco 70 Second TC-12 Automatic Carbon Determinator. The instrument employs high-temperature (ca. 1600°C), dry-combustion and thermal-conductivity detection of the purified carbon-dioxide combustion product and oxygen carrier gas mixtures. The methodology developed in this study is convenient and rapid (ca. 70 sec per freeze-dried sample), with a mean error (±2σ/x ·100) of ±4.4% at the 3 mg-C level and ±7.4% at the 10 mg-C level when benzoic acid is used as a standard, and ±9.2% at the 5 mg-C level and ±6.0% at the 10 mg-C level when casein is used as the standard. The technique was applied to the “splash zone” marine copepod Tigriopus californicus to obtain an average value of 38.6% C by weight. Concentrated samples of “net zooplankton” of varying size fractions were collected in the Monterey upwelling region over an eight-month period. Values up to 2000 mg-C/m2 ocean surface (0–200 m) were observed in a seasonal cycle doubly peaked for some size fractions but not for others.  相似文献   

4.
Recent data on world average river water composition and global mean composition of crustal rocks have allowed a reconsideration of earlier work on the concept of a chemical steady-state in the world ocean system. In the light of these new data, initial statistical analyses have been reinterpreted or modified. This paper reports improved correlations between mean oceanic residence times (tY) and water—rock partition coefficients (KY), and between KY and the electronegativity function (QYO). Such correlations support the concept that the average composition of seawater can be estimated, based on a simple dynamic model, using the electronegativities of elements and the rate of input of dissolved components.  相似文献   

5.
The densities of artificial and real Red Sea brines have been measured at 25°C with a vibrating tube densimeter. Measurements were also made on mixtures of Red Sea brines with seawater and pure water. The results have been used to characterize the density—composition relations of waters across the interface of brine and average Red Sea waters. The results for the real and artificial brines are in reasonable agreement.The composition of the brines and mixtures with seawater have been characterized by conductivity measurements of weight diluted samples. The conductivity salinities were found to be conservative to within ±0.07‰ for the mixtures.The densities of brines and mixtures of brines and seawater were estimated from apparent molal volume data using Young's rule. The calculated densities for all of the solutions were found to be in good agreement with the measured values, demonstrating the applicability of Young's rule to concentrated natural waters.  相似文献   

6.
Spectrophotometric measurements are reported for the first apparent dissociation constant of hydrogen sulfide in seawater over the temperature range 7.5–25°C and 2–35.8‰ salinity. These data are described by the expression pK1′ = 2.527 ? 0.169 Cl13 + 1359.96/T. The second apparent dissociation constant in potassium chloride solution was estimated potentiometrically using a sulfide specific ion electrode. A value of ~13.6 was found for pK2′ at a KCl concentration of 0.67 M. It is suggested that explicit reference to the sulfide ion, S2?, in describing equilibria in marine waters be dropped in favor of a formulation involving the bisulfide ion, HS?.  相似文献   

7.
Particulate nitrogen (PN) and chlorophyll a (Chla) were measured in the northern reach of San Francisco Bay throughout 1980. The PN values were calculated as the differences between unfiltered and filtered (0·4 μm) samples analyzed using the UV-catalyzed peroxide digestion method. The Chla values were measured spectrophotometrically, with corrections made for phaeopigments. The plot of all PNChla data was found to be non-linear, and the concentration of suspended particulate matter (SPM) was found to be the best selector for linear subsets of the data. The best-fit slopes of PNChla plots, as determined by linear regression (model II), were interpreted to be the N: Chla ratios of phytoplankton. The Y-intercepts of the regression lines were considered to represent easily-oxidizable detrital nitrogen (EDN). In clear water ( < 10 mg l?1 SPM), the N: Chla ratio was 1·07 μg-at N per μg Chla. It decreased to 0·60 in the 10–18 mg l?1 range and averaged 0·31 in the remaining four ranges (18–35, 35–65, 65–155, and 155–470 mg l?1). The EDN values were less than 1 μg-at N l?1 in the clear water and increased monotonically to almost 12 μg-at N l?1 in the highest SPM range. The N: Chla ratios for the four highest SPM ranges agree well with data for phytoplankton in light-limited cultures. In these ranges, phytoplankton-N averaged only 20% of the PN, while EDN averaged 39% and refractory-N 41%.  相似文献   

8.
Examination of the consequences of the stoichiometric association constant K1a = 41.7 for MgSO4 in seawater as advocated by Johnson and Pytkowicz (1979) leads to a thermodynamic association constant Ka = 212.6, a value 32% greater than KA = 160 derived from conductance data. Use of Ka = 160 leads to a K1a in essential agreement with the value of 10.2 reported by Kester and Pytkowicz (1969).  相似文献   

9.
The apparent solubility product of aragonite in 32‰ seawater at 25.0°C is reported as Ksp = (0.869±0.049) × 10?6(mol2kgseawater?2) thus confirming the value of R.A. Berner, 1976 (Am. J. Sci., 276: 713–730). The apparent solubility product ratio for aragonite and calcite is reported as K′aragoniteK′calcite = 2.05 The deviation of this value from the thermodynamic ratio is atttributed to the formation of a stable low Mg-calcite coating on pure calcite in seawater measurements of solubility.  相似文献   

10.
Laboratory investigations were conducted on the formation of NaF° ion-pairs at the ionic strength of seawater using specific ion electrodes. Sodium and fluoride ion electrodes produced results which are consistent with the ion-pairing model for these ionic interactions. The stoichiometric association constant for NaF°, K1NaF, was determined at 15, 25, and 35°C. It was assumed that K1NaF was a function of temperature, pressure, and ionic strength but not of solution composition. The value for K1NaF at 25°C and I = 0.7 m is 0.045 ± 0.006. K1NaF increased with decreasing temperature. This result was used to recompute values of K1MgF and K1CaF accounting for the presence of NaF° ion-pairs. The value for K1NaF indicates that 1.1% of the fluoride in seawater is ion-paired with sodium at 25°C and 35‰ salinity. This fraction increases to approximately 2% at the lower temperatures found in the deep ocean. The percentage of free fluoride in natural seawater was measured at 15, 25, and 35°C to verify the speciation calculated from equilibrium constants.  相似文献   

11.
Manganese deposits from the Madagascar Basin, the Crozet Basin and the basins west of the Madagascar Ridge around southern Africa differ chemically from one another. This appears to be largely because of differences in the degree of oxygenation of the environment; most highly oxidizing is the Madagascar Basin, where the MnFe ratio is very low and where the manganese deposits probably consist largely of “birnessite”.Continental-margin samples differ from basin samples in having higher MnFe ratios, probably because of diagenetic remobilization processes within the sediment column. The ratios of Mn and Fe to certain metals (MnNi, MnZn, FeCo and FeAs) are the opposites of those found in other continental-margin environments, suggesting either a difference in the diagenetic process, or an additional metal source, off southern Africa. Both seawater and bottom sediments of the southern African margin are metal-enriched, and could act as sources of metals for growing manganese nodules and encrustations.  相似文献   

12.
An investigation of ferric ion complexing has been conducted in synthetic media and seawater at 25°C. Formation constants were potentiometrically determined for the species FeCl2+, FeCl2+, FeOH2+, and Fe(OH)2+ at an ionic strength of 0.68 m. Formation constants for the ferric chloride complexes were determined as Clβ1 = 2.76 and Clβ2 = 0.44. In a study of the reaction Fe3+ + nH2O ? Fe(OH)n(3?n)+ + nH+ in NaClO4, NaNO3 and NaCl the formation constants 1β1and1β2 were shown to be relatively independent of medium when the effects of nitrate and chloride complexing were taken into account. The average values obtained for these constants are 1β1 = 1.93 · 10?3and1β2 = 8.6 · 10?8. Reasonable agreement with these values was obtained when these constants were determined in seawater by accounting for the effects of chloride, fluoride and sulfate complexing.  相似文献   

13.
The term cabbeling describes the convection that can occur when a mixture of two oceanic water masses is more dense than both of the parent water masses. When the two water masses are situated one above the other, the temperature and salinity distributions are in the correct senses for double-diffusive convection to occur and it is found that the prime effects of the nonlinearity of the equation of state are firstly to drive a greater level of double-diffusive convective activity in the lower layer than in the upper layer, and secondly, to make the lower edge of the interfacial region less gravitationally stable. Both of these effects cause the interface to migrate upwards as the lower layer grows at the expense of the upper layer. We introduce a nondimensional parameter δ (called the cabbeling parameter) which represents the importance of the nonlinearity of the equation of state:—δ is zero when the equation of state is linear and when cabbeling is normally thought to be possible, δ is greater than unity. Experiments set up in both the finger and diffuse sense show how the nondimensional measure of the upward interface migration (called the “entrainment” parameter E) varies with the density anomaly ration R? for various values of δ between zero and 2.0 and that no abrupt change in this behaviour occurs at δ = 1.0. It is impossible to explain these observation by neglecting double-diffusive convection and considering only the convection driven by the conventional cabbeling instability. The successful interpretation of the laboratory results relies on considering the effects of a non-linear equation of state on the double-diffusive convection process.  相似文献   

14.
The various assumptions implicit in the calculation of acid dissociation constants (based on ionic medium standard states) from potentiometric titrations using a cell with liquid junction (i.e. a pH measuring cell) have been examined. It was concluded that results can be obtained having an accuracy commensurate with the experimental precision. It has been shown that although the precise composition of the medium is a function of the hydrogen ion concentration (because of the protolytic nature of some of the ions in the media, e.g., sulphate and fluoride), the effect of such variations in the medium composition can be compensated for when defining the activity of hydrogen ion on an ionic medium standard state by defining the concentration of hydrogen ion as:
[H]SWS=h(1 + βHSO4ST + βHFET)
where βHSO4 and βHF are the relevant association constants and ST and FT are the total concentrations of sulphate and fluoride, respectively.This approach was used to obtain values for the ionic product of water (KW) in artificial seawater media at various temperatures and ionic strengths. These were fitted to give the equation (molal concentration units):
pKw= 3441.0T+2.256-0.709112 (rms deviation 0.01)
where I is the formal ionic strength of the artificial seawater medium and T is the absolute temperature. The values obtained are in reasonable agreement with those found by previous workers.  相似文献   

15.
Seasonal benthic respiration rate observations from Chesapeake Bay and the Patuxent estuary have been used to determine the benthic decay coefficient. Non-linear parameter estimation procedures were employed to delineate the optimal values and associated confidence intervals for the microbial decay and macrofaunal respiration parameters. The results demonstrate that microbial decay of organic detritus on the bottom is a long-term process with a yearly averaged decay coefficient of around k = 0·0056 day?1 (τ = 1k = 180 day).  相似文献   

16.
The density of artificial seawater has been measured with a magnetic float densitometer at 1 atm. from 0 to 40°C (in 5° intervals) and from 0 to 21‰ chlorinity. The densities at each temperature have been fitted to a modified Root (1933) equation, d = d0 + AV′ ClV + BV′ ClV32 and an equation based on the Debye-Hückel limiting law, d = d0 + AV ClV + BV ClV32 + CV ClV2 where AV′, BV′, AV, BV and CV are temperature-dependent constants (related to the ion-water and ion-ion interactions of the major components), d0 is the density of pure water and ClV is the volume chlorinity — ClV = Cl (‰) × density. The densities fit these equations to ±9 p.p.m. from 0 to 25°C and ±18 p.p.m. from 30 to 40°C. The densities for artificial seawater are in good agreement with our measurements of Copenhagen seawater and the results for natural seawater obtained from Knudsen's tables.The expansibilities of the artificial seawater mixtures have been calculated from the temperature dependence of the densities. The resulting expansibilities at each temperature were fitted to the equations α = α0 + AE′ ClV + BE′ ClV32 and α = α0 + AE ClV + BE ClV32 + CE ClV2 where AE′, BE′, AE, BE and CE are constants (related to the effect of temperature on the ion-water and ion-ion interactions of the major components) and α0 is the expansibility of pure water. The expansibilities fit these equations to ±1 p.p.m. and at 35‰ S agree within ±1 p.p.m. with the expansibilities obtained for natural seawater from Knudsen's tables.Theoretical density and expansibility constants have been determined from the apparent equivalent volumes and expansibilities of the major components of seawater by using the additivity principle. The average deviations of the calculated densities and expansibilities are, respectively, ±20 and ±3 p.p.m. over the entire temperature range.  相似文献   

17.
18.
The photolysis of nitrate in seawater by sunlight has been re-examined using abiotic seawater and naturally occurring concentrations. Photochemical formation of nitrite from nitrate was observed. First-order nitrate photolysis rate coefficients calculated from nitrite appearance (corrected for concomitant nitrite photolysis) ranged from 0 to 2.3 yr?1, median 0.7 yr?1. The coefficients did not correlate well with water chemistry, but decreased with increasing light dose. A first-order rate coefficient of 0.4 yr?1 was calculated for the primary photochemical process NO3? + hυ = NO2? + O(3P) under sea surface equatorial insolation and cloudiness conditions. However, no significant nitrate concentration decreases could be detected, suggesting an upper limit for the net first-order nitrate loss rate coefficient of 0.3 yr?1. The data thus imply some conversion in the reverse sense: NO2? + hυ →→ NO3?.If our median rate estimate applies to surface oceanic conditions, nitrate photolysis proceeds at roughly 0.02–0.5% of the rate of N incorporation during primary production. It is thus not a significant NO3-N sink. Since such reactive species as oxygen atoms, nitrogen dioxide, and hydroxyl radicals are produced, the reaction may have significant consequences in seawater. However, nitrite photolysis is almost certainly a more significant process.The results show internal inconsistencies and our rates are markedly different from those calculated using data from other studies. Nitrate photolysis rates are theoretically concentration- and light dose-dependent. Whether these dependencies explain the apparent discrepancies is unclear, as methodological effects may also be involved. The system requires further study.  相似文献   

19.
Iron solubility equilibria were investigated in seawater at 36.22‰ salinity and 25°C using several filtration and dialysis techniques. In simple filtration experiments with 0.05 μm filters and Millipore ultra-filters, ferric chlorides fluorides, sulfates, and FeOH2+ species were found to be insignificant relative to Fe(OH)2+ at p[H+] = ?log [H+] greater than 6.0. Hydrous ferric oxide freshly precipitated from seawater yielded a solubility product of 1Kso = [Fe3+][H+]?3 = 4.7 · 105. Solubility studies based on the rates of dialysis of various seawater solutions and on the filtration of acidified seawater solutions indicated the existence of the Fe(OH)30 species. The formation constant for this species can be calculated as 1β3 = [Fe(OH)30] [H+]3/[Fe3+] = 2.4 · 10?14. The Fe(OH)4? species is present at concentrations which are negligible compared to Fe(OH)2+ and Fe(OH)30 in the normal pH range of seawater. However, there is at least one other significant ferric complex in seawater above p[H+] = 8.0 (possibly with bicarbonate, carbonate, or borate ions) in addition to the Fe(OH)2+ and Fe(OH)30 species.  相似文献   

20.
Excess 210Pb in a core from a Mexican Coastal Lagoon, which has no connection with the sea shows a small but measurable decay over the length of the core, when different approaches were compared (excess and corrected 210Pb activity with depth, total and inorganic cumulative weights) significant differences in the values for the sedimentation rate are obtained. The best coefficient correlation was calculated when corrected 210Pb activity for the uneven distribution of organic matter and cumulative inorganic weight is considered (ω = 0·93 cm yr?1, R = ?0·86; ω = 0·51 cm yr?1 for the top 13 cm, R = ?0·90 and 1·52 cm yr?1 for the interval 14–46 with R = ?0·96).Time frames in the sedimentary column were in agreement between the 210Pb calculated time and the appearance of shells fragments probably associated with the disturbances caused by the 1961 hurricane Tara.The surface accumulation rate is equivalent to a mean deposition of 262·5 g m?2 yr?1 or organic matter which is minor but comparable to some salt marshes of United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号