首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The shape of a galaxy is constrained both by mechanisms of formation (dissipational versus dissipationless) and by the available orbit families (the shape and amount of regular and stochastic orbits). It is shown that, despite the often very flattened shapes of banana and fish orbits, these boxlet orbits generally do not fit a triaxial galaxy in detail because, similar to loop orbits, they spend too little time at the major axis of the model density distribution. This constraint from the shape of fish orbits is relaxed at (large) radii where the density profile of a galaxy is steep.  相似文献   

3.
In N -body simulations the force calculated between particles representing a given mass distribution is usually softened, to diminish the effect of graininess. In this paper we study the effect of such a smoothing, with the aim of finding an optimal value of the softening parameter. As already shown by Merritt, for too small a softening the estimates of the forces will be too noisy, while for too large a softening the force estimates are systematically misrepresented. In between there is an optimal softening, for which the forces in the configuration best approach the true forces. The value of this optimal softening depends both on the mass distribution and on the number of particles used to represent it. For a higher number of particles the optimal softening is smaller. More concentrated mass distributions necessitate smaller softening, but the softened forces are never as good an approximation of the true forces as for non-centrally concentrated configurations. We give good estimates of the optimal softening for homogeneous spheres, Plummer spheres and Dehnen spheres. We also give a rough estimate of this quantity for other mass distributions, based on the harmonic mean distance to the k th neighbour ( k =1,…,12), the mean being taken over all particles in the configuration. Comparing homogeneous Ferrers' ellipsoids of different shapes we show that the axial ratios do not influence the value of the optimal softening. Finally we compare two different types of softening, a spline softening and a generalization of the standard Plummer softening to higher values of the exponent. We find that the spline softening fares roughly as well as the higher powers of the power-law softening and both give a better representation of the forces than the standard Plummer softening.  相似文献   

4.
5.
When faced with the task of constraining a galaxy's potential given limited stellar kinematical information, what is the best way of treating the galaxy's unknown distribution function (DF)? Using the example of estimating black hole (BH) masses, I argue that the correct approach is to consider all possible DFs for each trial potential, marginalizing the DF using an infinitely divisible prior. Alternative approaches, such as the widely used maximum-penalized likelihood method, neglect the huge degeneracies inherent in the problem and simply identify a single, special DF for each trial potential.
Using simulated observations of toy galaxies with realistic amounts of noise, I find that this marginalization procedure yields significantly tighter constraints on BH masses than the conventional maximum-likelihood method, although it does pose a computational challenge which might be solved with the development of a suitable algorithm for massively parallel machines. I show that in practice the conventional maximum-likelihood method yields reliable BH masses with well-defined minima in their χ2 distributions, contrary to claims made by Valluri, Merritt & Emsellem.  相似文献   

6.
We investigate an analytical treatment of bifurcations of families of resonant 'thin' tubes in axisymmetric galactic potentials. We verify that the most relevant bifurcations are due to the (1:1) resonance producing the 'inclined' orbits through two different mechanisms: from the disc orbit and from the 'thin' tube associated with the vertical oscillation. The closest resonances occurring after these are the (4:3) resonance in the oblate case and the (2:1) resonance in the prolate case. The (1:1) resonances are treated in a straightforward way using a second-order truncated normal form. The higher order resonances are instead cumbersome to investigate, because the normal form has to be truncated to a high degree and the number of terms grows very rapidly. We therefore adopt a further simplification giving analytical formulae for the values of the parameters at which bifurcations ensue and compare them with selected numerical results. Thanks to the asymptotic nature of the series involved, the predictions are reliable well beyond the convergence radius of the original series.  相似文献   

7.
8.
We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples, we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber only affects the exact form of the Coulomb logarithm. The latter converges on small scales because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm in this way the earlier results based on the impulse approximation of small angle scatterings.  相似文献   

9.
Using N -body simulations with a large set of massless test particles, we compare the predictions of two theories of violent relaxation, the well-known Lynden-Bell theory and the more recent theory by Nakamura. We derive 'weakened' versions of both the theories in which we use the whole equilibrium coarse-grained distribution function     as a constraint instead of the total energy constraint. We use these weakened theories to construct expressions for the conditional probability   Ki (τ)  that a test particle initially at the phase-space coordinate τ would end-up in the i th macro-cell at equilibrium. We show that the logarithm of the ratio   Rij (τ) ≡ Ki (τ)/ Kj (τ)  is directly proportional to the initial phase-space density   f 0(τ)  for the Lynden-Bell theory and inversely proportional to   f 0(τ)  for the Nakamura theory. We then measure   Rij (τ)  using a set of N -body simulations of a system undergoing a gravitational collapse to check the validity of the two theories of violent relaxation. We find that both the theories are at odds with the numerical results, both qualitatively and quantitatively.  相似文献   

10.
11.
12.
In the past two decades, it has been established by high-resolution observations of early-type galaxies that their nuclear surface brightness and corresponding stellar mass densities are characterized by cusps. In this paper, we present a new spherical analytical model family describing mild cuspy centres. We study isotropic and anisotropic models of Osipkov–Merritt type. It is shown that the associated distribution functions and intrinsic velocity dispersions can be represented analytically in a unified way in terms of hypergeometric series, allowing thus a straightforward comparison of these important global quantities for galaxies having underlying mass densities which may differ significantly in their degree of central cuspiness or radial falloff.  相似文献   

13.
It is shown that the cuspy density distributions observed in the cores of elliptical galaxies can be realized by dissipationless gravitational collapse. The initial models consist of power-law density spheres such as ρ ∝ r −1 with anisotropic velocity dispersions. Collapse simulations are carried out by integrating the collisionless Boltzmann equation directly, on the assumption of spherical symmetry. From the results obtained, the extent of constant density cores, formed through violent relaxation, decreases as the velocity anisotropy increases radially, and practically disappears for extremely radially anisotropic models. As a result, the relaxed density distributions become more cuspy with increasing radial velocity anisotropy. It is thus concluded that the velocity anisotropy could be a key ingredient for the formation of density cusps in a dissipationless collapse picture. The velocity dispersions increase with radius in the cores according to the nearly power-law density distributions. The power-law index, n , of the density profiles, defined as ρ ∝ r − n , changes from n ≈2.1 at intermediate radii to a shallower power than n ≈2.1 toward the centre. This density bend can be explained from our postulated local phase-space constraint that the phase-space density accessible to the relaxed state is determined at each radius by the maximum phase-space density of the initial state.  相似文献   

14.
We discuss the morphology, photometry and kinematics of the bars which have formed in three N -body simulations. These have initially the same disc and the same halo-to-disc mass ratio, but their haloes have very different central concentrations. The third model includes a bulge. The bar in the model with the centrally concentrated halo (model MH) is much stronger, longer and thinner than the bar in the model with the less centrally concentrated halo (model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to 'X'-shaped, as opposed to that of model MD, which stays boxy. The projected density profiles obtained from cuts along the bar major axis, for both the face-on and the edge-on views, show a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of the face-on density distribution of model MH shows very large  m=2  , 4, 6 and 8 components. Contrary to this, for model MD the components  m=6  and 8 are negligible. The velocity field of model MH shows strong deviations from axial symmetry, and in particular has wavy isovelocities near the end of the bar when viewed along the bar minor axis. When viewed edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate between those of the bars of the other two models. All three models exhibit a lot of inflow of the disc material during their evolution, so that by the end of the simulations the disc dominates over the halo in the inner parts, even for model MH, for which the halo and disc contributions were initially comparable in that region.  相似文献   

15.
A recent observation with the Hipparcos satellite and some numerical simulations imply that the interaction between an oblate halo and a disc is inappropriate for the persistence of galactic warps. Following on from this , we have compared the time evolution of galactic warps in a prolate halo with that in an oblate halo. The haloes were approximated as fixed potentials, while the discs were represented by N -body particles. We have found that the warping in the oblate halo continues to wind up, and finally disappears. On the other hand, for the prolate halo model, the precession rate of the outer disc increases when the precession of the outer disc recedes from that of the inner disc, and vice versa. Consequently, the warping in the prolate halo persisted to the end of the simulation by retaining the alignment of the line of nodes of the warped disc. Therefore, our results suggest that prolate haloes could sustain galactic warps. The physical mechanism of the persistence of warp is discussed on the basis of the torque between a halo and a disc and that between the inner and outer regions of the disc.  相似文献   

16.
17.
18.
19.
20.
We investigate the effect of dust on the observed rotation rate of a stellar bar. The only direct way to measure this quantity relies on the Tremaine & Weinberg (TW) method which requires that the tracer satisfies the continuity equation. Thus, it has been applied largely to early-type barred galaxies. We show using numerical simulations of barred galaxies that dust attenuation factors typically found in these systems change the observed bar pattern speed by 20–40 per cent. We also address the effect of star formation on the TW method and find that it does not change the results significantly. The results presented here suggest that applications of the TW method can be extended to include barred galaxies covering the full range of Hubble type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号