首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean Arc)   总被引:1,自引:1,他引:0  
The >60 km3 rhyolitic Kos Plateau Tuff provides an exceptional probe into the behavior of volatile components in highly evolved arc magmas: it is crystal-rich (30–40 vol% crystals), was rapidly quenched by the explosive eruptive process, and contains abundant homogeneous melt inclusions in large quartz crystals. Several methods for measuring major, trace and volatile element concentrations (SIMS, FTIR, Raman spectroscopy, electron microprobe, LA–ICPMS) were applied to these melt inclusions. We found a ~2 wt% range of H2O contents (4.5–6.5 wt% H2O, measured independently by SIMS, FTIR, and Raman spectroscopy) and relatively low CO2 concentrations (15–140 ppm measured by FTIR, with most analyses <100 ppm). No obvious correlations between H2O, CO2, major and trace elements are observed. These observations require a complex, protracted magma evolution in the upper crust that included: (1) vapor-saturated crystallization in a chamber located between 1.5 and 2.5 kb pressure, (2) closed-system degassing (with up to 10 vol% exsolved gas) as melts percolated upwards through a vertically extensive mush zone (2–4 km thick), and (3) periodic gas fluxing from subjacent, more mafic and more CO2-rich magma, which is preserved as andesite bands in pumices. These processes can account for the range of observed H2O and CO2 values and the lack of correlation between volatiles and trace elements in the melt inclusions.  相似文献   

2.
To understand partitioning of hydrogen between hydrous basaltic and andesitic liquids and coexisting clinopyroxene and garnet, experiments using a mid-ocean ridge basalt (MORB) + 6 wt.% H2O were conducted at 3 GPa and 1,150–1,325°C. These included both isothermal and controlled cooling rate crystallization experiments, as crystals from the former were too small for ion microprobe (SIMS) analyses. Three runs at lower bulk water content are also reported. H2O was measured in minerals by SIMS and in glasses by SIMS, Fourier Transform infrared spectroscopy (FTIR), and from oxide totals of electron microprobe (EMP) analyses. At 3 GPa, the liquidus for MORB with 6 wt.% H2O is between 1,300 and 1,325°C. In the temperature interval investigated, the melt proportion varies from 100 to 45% and the modes of garnet and clinopyroxene are nearly equal. Liquid composition varies from basaltic to andesitic. The crystallization experiments starting from above the liquidus failed to nucleate garnets, but those starting from below the liquidus crystallized both garnet and clinopyroxene. SIMS analyses of glasses with >7 wt.% H2O yield spuriously low concentrations, perhaps owing to hydrogen degassing in the ultra-high vacuum of the ion microprobe sample chamber. FTIR and EMP analyses show that the glasses have 3.4 to 11.9 wt.% water, whilst SIMS analyses indicate that clinopyroxenes have 1,340–2,330 ppm and garnets have 98–209 ppm H2O. D H cpx−gt is 11 ± 3, D H cpx−melt is 0.023 ± 0.005 and D H gt−melt is 0.0018 ± 0.0006. Most garnet/melt pairs have low values of D H gt−melt, but D H gt−melt increases with TiO2 in the garnet. As also found by previous studies, values of D H cpx−melt increase with Al2O3 of the crystal. For garnet pyroxenite, estimated values of D H pyroxenite−melt decrease from 0.015 at 2.5 GPa to 0.0089 at 5 GPa. Hydration will increase the depth interval between pyroxenite and peridotite solidi for mantle upwelling beneath ridges or oceanic islands. This is partly because the greater pyroxene/olivine ratio in pyroxenite will tend to enhance the H2O concentration of pyroxenite, assuming that neighboring pyroxenite and peridotite bodies have similar H2O in their pyroxenes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Liquidus phase relationships have been determined for a high-MgO basalt (STV301: MgO=12.5 wt%, Ni=250 ppm, Cr=728 ppm) from Black Point, St Vincent (Lesser Antilles arc). Piston-cylinder experiments were conducted between 7.5 and 20 kbar under both hydrous and oxidizing conditions. AuPd capsules were used as containers. Compositions of supraliquidus glasses and mass-balance calculations show that Fe loss is < 10% in the majority of experiments. Two series of water concentrations in melt were investigated: (i) 1.5 wt% and (ii) 4.5 wt% H2O, as determined by SIMS analyses on quenched glasses and with the by difference technique. The Fe3+/Fe2+ partitioning between Cr-Al spinel and melt and olivine-spinel equilibria show that oxidizing fO2 were imposed (NNO + 1.5 for the 1.5 wt% H2O series, NNO + 2.3 for the 4.5 wt% H2O series). For both series of water concentrations, the liquid is multiply-saturated with a spinel lherzolite phase assemblage on its liquidus, at 1235°C, 11.5 kbar (1.5 wt% H2O) and 1185°C, 16 kbar (4.5 wt% H2O). Liquidus phases are homogeneous and comparable to typical mantle compositions. Mineral-melt partition coefficients are generally identical to values under anhydrous conditions. The modal proportion cpx/opx on the liquidus decreases from the 1.5 wt% to the 4.5 wt% H2O series. The experimental data are consistent with STV301 being a product of partial melting of lherzolitic mantle. Conditions of multiple saturation progressively evolve toward lower temperatures and higher pressures with increasing melt H2O concentration. Phase equilibria constraints, i.e., the necessity of preserving the mantle signature seen in high-MgO and picritic arc basalts, and glass inclusion data suggest that STV301 was extracted relatively dry (∼ 2 wt% H2O) from its mantle source. However, not all primary arc basalts are extracted under similarly dry conditions because more hydrous melts will crystallize during ascent and will not be present unmodified at the surface. From degrees of melting calculated from experiments on KLB-1, extraction of a 12.5 wt% MgO melt with ∼ 2 wt% H2O would require a H2O concentration of 0.3 wt% in the sub-arc mantle. For mantle sources fluxed with a slab-derived hydrous component, extracted melts may contain up to ∼ 5.5 wt% H2O.  相似文献   

4.
We study the phase relations and mineral chemistry in the systems muscovite–NH3–N2-H2O and eclogite + muscovite–NH3–N2-H2O at 6.3–7.8 GPa, 1000–1200 °C, and oxygen fugacity (fO2) from ∼IW (Fe–FeO) to ∼ NNO (Ni–NiO) equilibria. The quenched H2O-bearing fluids differ in nitrogen speciation from NH3-rich to N2–rich, and the respective N2/(NH3+N2) ratio varies from <0.1 to ∼ 1. N-bearing K-cymrite is obtained in association with a kyanite-garnet-jadeite ± muscovite ± corundum assemblage in the muscovite–NH3–N2-H2O system and coexists with pyrope-almandine garnet and omphacite in the eclogite + muscovite–NH3–N2-H2O system. The presence of an N-bearing fluid in the studied systems stabilizes the K-cymrite structure. Muscovite does not convert to K-cymrite in the absence of NH3–N2-bearing fluid up to 7.8 GPa and 1070–1120 °C. According to FTIR and Raman spectroscopy, K-cymrite in equilibrium with an N-rich fluid can capture a huge amount of nitrogen in cages of its framework, mainly as N2 molecules at fO2 ∼NNO and predominantly as NH3 molecules at fO2 ∼IW. The storage capacity of K-cymrite with respect to nitrogen increases from 2.9 to 6.3 wt% with increase of fO2. FTIR spectroscopy of muscovite equilibrated with K-cymrite shows that the clathrate mechanism of nitrogen entrapment by aluminosilicates (as neutral N2 and NH3 molecules) is much more efficient than the K+ → (NH4)+ substitution. The structure of N-bearing K-cymrite (K,(NH4+))[AlSi3O8]·(N2,NH3,H2O) determined using X-ray single-crystal diffraction is very similar to that of H2O-bearing K- and Ba-cymrites. It includes aluminosilicate layers consisting of double six-membered tetrahedral rings and cation sites statistically occupied with K+, Ba2+ and (NH4)+ on the six-fold symmetry axis in interlayer space. The N2 and NH3 molecules are located near the cage centers and, unlike H2O molecules, are included in the coordination environment of the cations. Our study confirms that NH3- and N2-rich K-cymrite may be stable in metapelites and can act as a redox insensitive carrier of nitrogen to >250 km mantle depths in downgoing slabs. The stability field of N-rich K-cymrite in the presence of an N2–H2O–NH3-bearing fluid is inferred to be P ≥ 4 GPa in metasediments rich in K-feldspar and P ≥ 6 GPa in those containing phengite. As the slab material sinks deeper than 250–300 km where N-bearing K-cymrite may lose stability, the releasing nitrogen may migrate to metal-saturated mantle and become stored there in γ−Fe, Fe3C, metal melt, or even iron nitride phases.  相似文献   

5.
Résumé On a étudié statistiquement les variations de (OH+F) dans 392 micas (muscovites, biotites, micas lithiques). Dans les muscovites et les micas lithiques alumineux l'écart du nombre de (OH+F) à la valeur théorique apparait dû à des erreurs de dosage de H2O+. Dans les micas lithiques ferreux on observe une moyenne de 4,62 (OH+F)/maille. Cet excès en (OH+F), exprimé en oxonium H3O+, correspond au déficit en cations XII. Dans les micas ferromagnésiens (biotites, phlogopites) on observe un déficit en (OH+F) (x = 3,59). On rend compte de ce déficit en supposant que Fe3+ présent dans la structure est dû à une oxydation in situ par déprotonation.Les conséquences quant aux erreurs introduites sur le nombre de cations lors du calcul de la formule structurale sont discutées.
Statistical study of (OH+F) content of muscovites, biotites, and lithium micas
Summary A statistical study of the variations of (OH+F) content of 392 micas (muscovites, biotites, lithium micas) has been undertaken. In muscovites and lithium-aluminium micas, the fluctuation of (OH+F) content can be explain by analytical errors in determination of H2O+ and F. In ferrous lithium micas the mean content of (OH+F) is 4.62 at. per unit cell. Converted to oxonium H3O+, this excess is equal to the K+ deficiency. Biotites and phlogopites are hydroxyl deficient (x = 3,59). This can be explained if it is assumed that all Fe3+ present is due to auto-oxydation of Fe2+ with loss of H+ to maintain charge neutrality.A discussion of the cationic variations introduced in the calculation of the structural formulae is given.


Avec 5 figures  相似文献   

6.
To interpret the degassing of F-bearing felsic magmas, the solubilities of H2O, NaCl, and KCl in topaz rhyolite liquids have been investigated experimentally at 2000, 500, and ≈1 bar and 700° to 975 °C. Chloride solubility in these liquids increases with decreasing H2O activity, increasing pressure, increasing F content of the liquid from 0.2 to 1.2 wt% F, and increasing the molar ratio of ((Al + Na + Ca + Mg)/Si). Small quantities of Cl exert a strong influence on the exsolution of magmatic volatile phases (MVPs) from F-bearing topaz rhyolite melts at shallow crustal pressures. Water- and chloride-bearing volatile phases, such as vapor, brine, or fluid, exsolve from F-enriched silicate liquids containing as little as 1 wt% H2O and 0.2 to 0.6 wt% Cl at 2000 bar compared with 5 to 6 wt% H2O required for volatile phase exsolution in chloride-free liquids. The maximum solubility of Cl in H2O-poor silicate liquids at 500 and 2000 bar is not related to the maximum solubility of H2O in chloride-poor liquids by simple linear and negative relationships; there are strong positive deviations from ideality in the activities of each volatile in both the silicate liquid and the MVP(s). Plots of H2O versus Cl in rhyolite liquids, for experiments conducted at 500 bar and 910°–930 °C, show a distinct 90° break-in-slope pattern that is indicative of coexisting vapor and brine under closed-system conditions. The presence of two MVPs buffers the H2O and Cl concentrations of the silicate liquids. Comparison of these experimentally-determined volatile solubilities with the pre-eruptive H2O and Cl concentrations of five North American topaz and tin rhyolite melts, determined from melt inclusion compositions, provides evidence for the exsolution of MVPs from felsic magmas. One of these, the Cerro el Lobo magma, appears to have exsolved alkali chloride-bearing vapor plus brine or a single supercritical fluid phase prior to entrapment of the melt inclusions and prior to eruption. Received: 6 November 1995 / Accepted: 29 January 1998  相似文献   

7.
 Complete chemical analyses, including ferric and ferrous iron, H2O contents and δD values for 16 phlogopite and biotite and 2 hornblende separates are presented. Samples were obtained from volcanic rocks from four localities: (1) phlogopite phenocrysts from minette lavas from the western Mexico continental arc, (2) biotite and hornblende phenocrysts from andesite lavas from Mono Basin, California, (3) phlogopite and biotite from clinopyroxenite nodules entrained in potassic lavas from the East African Rift, Uganda, and (4) phlogopite phenocrysts from a wyomingite lava in the Leucite Hills, Wyoming. The Fe2O3 contents in the micas range from 0.8 to 10.5 wt%, corresponding to 0.09 to 1.15 Fe3+ per formula unit (pfu). Water contents vary from 1.6 to 3.0 wt%, corresponding to 1.58 to 3.04 OH pfu, significantly less than would be expected for a site fully occupied by hydroxyl. Cation- and anion-based normalization procedures provide accurate mineral formulae with respect to most cations and anions, but are unable to generate accurate estimates of Fe3+/FeT, and overestimate OH at the expense of O on the hydroxyl site. These inaccuracies are present despite acceptable adjusted totals and stoichiometric calculated site occupancies. The phlogopite and biotite phenocrysts in arc-related lavas from western Mexico and eastern California have the highest Fe3+/FeT ratios (56–87%), reflecting high magmatic oxygen fugacities (ΔNNO = +2 to +5), in contrast to those from Uganda (25–40%) and the Leucite Hills (23%). There is no correlation between the OH content and the Fe3+/FeT ratio in the micas. Values of KMg/Fe2+D (± 2σ errors) were calculated for three phlogopite-olivine pairs (0.12 ± 0.12, 0.26 ± 0.14, 0.09 ± 0.12), two biotite-hornblende pairs (0.73 ± 0.08 and 1.22 ± 0.10) and a single phlogopite-augite pair (1.15 ± 0.12). Values of KF/OHD for two biotite and hornblende pairs could not be determined without significant error because of the extremely low F contents (< 0.2 wt%) of the four phases. The δD values obtained in this study encompass a large range (−137 to −43‰). The phlogopite and biotite separates from Uganda have δD values of −70 to −49‰, which overlap those believed to represent “primary” mantle. There is a larger range in δD values (−137 to −43‰) for phlogopite phenocrysts from western Mexico minette lavas, although their range in δ18O values (5.2–6.2‰) is consistent with “normal” mantle. It is unlikely, therefore, that the variable δD values reflect heterogeneity in the mantle source region of the minette magmas. Nor can the extremely low δD values reflect degassing of H2 or H2O since almost 100% loss of dissolved water in the magma is required, an unrealistic scenario given the stability of the hydrous phenocrysts. The very low δD values of the Mascota minette phlogopites require that the hydrogen be introduced from an external source (e.g., meteoric water). Whatever the process responsible for the observed hydrogen isotope composition, it had no effect on the δ18O value, f O 2, a H 2O or bulk composition of the host magmas. Received: 5 January 1995 / Accepted: 19 March 1996  相似文献   

8.
Micaceous kimberlites from South Africa and Canada contain two types of groundmass mica less than 1 mm across. Very rare Type I micas are relatively iron-rich with mg [ = Mg/(Mg + Fe)] 0.45–0.65, TiO2 3–6 wt%, Al2O3 14–16wt%, no Fe3+ required in tetrahedral sites, low NiO (~0.02 wt%), and relatively high na [Na2O/(Na2O + K2O)] 0.02–0.03. The much more abundant Type II micas are variable in composition, but relative to Type I micas are more magnesium (mg 0.80-0.93), lower in TiO2 (0.7–4.0 wt%) and Al2O3 (6.8–14.2 wt%), have substantial Fe3+ in tetrahedral sites, and have relatively low na. Both types may have rims with compositions indicative of mica-‘serpentine’ mixtures resulting from reaction with a highly aqueous fluid. The petrographically-determined ‘serpentine’ is chemically of two types: Fe-rich serpentine and Fe-rich talc. Associated phases in the ground-mass vary from one kimberlite to another: calcite, dolomite, diopside, chromite, Mg-ilmenite, perovskite, barite, pyrite, pentlandite, millerite?, heazlewoodite?, quartz.Inter-grain variations in composition of Type II micas may result from establishment of local reservoirs on a mm scale, consequent upon mechanical mixing and competition of other phases for minor elements (e.g. chromite for Cr, serpentine for Ni).Type I micas may result from an intrusive precursor (carbonatitic?) to kimberlite, perhaps genetically related, which was incorporated into a later pulse of kimberlite from which the Type II micas crystallized.  相似文献   

9.
OH in zoned amphiboles of eclogite from the western Tianshan,NW-China   总被引:1,自引:0,他引:1  
Chemically-zoned amphibole porphyroblast grains in an eclogite (sample ws24-7) from the western Tianshan (NW-China) have been analyzed by electron microprobe (EMP), micro Fourier-transform infrared (micro-FTIR) and micro-Raman spectroscopy in the OH-stretching region. The EMP data reveal zoned amphibole compositions clustering around two predominant compositions: a glaucophane end-member ( B Na2 C M2+ 3 M3+ 2 T Si8(OH)2) in the cores, whereas the mantle to rim of the samples has an intermediate amphibole composition ( A 0.5 B Ca1.5Na0.5 C M 2+ 4.5 M 0.53+ T Si7.5Al0.5(OH)2) (A = Na and/or K; M 2+ = Mg and Fe2+; M 3+ = Fe3+ and/or Al) between winchite (and ferro-winchite) and katophorite (and Mg-katophorite). Furthermore, we observed complicated FTIR and Raman spectra with OH-stretching absorption bands varying systematically from core to rim. The FTIR/Raman spectra of the core amphibole show three lower-frequency components (at 3,633, 3,649–3,651 and 3,660–3,663 cm−1) which can be attributed to a local O(3)-H dipole surrounded by M(1) M(3)Mg3, M(1) M(3)Mg2Fe2+ and M(1) M(3) Fe2+ 3, respectively, an empty A site and T Si8 environments. On the other hand, bands at higher frequencies (3,672–3,673, 3,691–3,697 and 3,708 cm−1) are observable in the rims of the amphiboles, and they indicate the presence of an occupied A site. The FTIR and Raman data from the OH-stretching region allow us to calculate the site occupancy of the A, M(1)–M(3), T sites with confidence when combined with EPM data. By contrast M(2)- and M(4) site occupancies are more difficult to evaluate. We use these samples to highlight on the opportunities and limitations of FTIR OH-stretching spectroscopy applied to natural high pressure amphibole phases. The much more detailed cation site occupancy of the zoned amphibole from the western Tianshan have been obtained by comparing data from micro-chemical and FTIR and/or Raman in the OH-stretching data. We find the following characteristic substitutions Si(T-site) (Mg, Fe)[M(1)–M(3)-site] → Al(T-site) Al[M(1)–M(3)-site] (tschermakite), Ca(M4-site)□ (A-site) → Na(M4-site) Na + K(A-site) (richterite), and Ca(M4-site) (Mg, Fe) [M(1)–M(3)-site] → Na(M4-site) Al[M(1)–M(3)-site] (glaucophane) from the configurations observed during metamorphism.  相似文献   

10.
The investigation of the NH3 loss in the NH4+-vermiculite (Santa Olalla) by thermogravimetry, evolved gas analysis, chemical analysis, X-ray diffraction and IR spectroscopy is reported here. The mass loss during heating takes place in two steps at about 650 and 825 °C. Additionally, the releases of H2O and NH3 occurs simultaneously. The experimental results indicate that the protons remaining in the interlayer space after NH3 removal trigger the H2O release. X-ray diffraction shows that during the decomposition of NH4+-vermiculite there are two domains with different interlayer spaces at ~9 and ~10 Å. As the decomposition proceeds, the intensity of the 9 Å peak increases at the expense of the second one. The change in the IR-stretching modes of the structural OH groups during heating indicates that the OH groups surrounded by 3Mg2+ or 2Mg2+Fe2+ are released at lower temperatures than those with environments like 2Mg2+Fe3+, 2Mg2+Al3+ or more complex ones.  相似文献   

11.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

12.
 Cation partitioning data for coexisting muscovite and biotite are shown to be useful indicators of relative interlayer bond length/strength in these minerals. These data therefore provide a useful crystal-chemical perspective on relative mass-transfer kinetics of radiogenic isotopes, and account for the observation that biotite is generally less retentive of 40Ar and 87Sr than coexisting muscovite. Partitioning behavior of trace elements underscores three reasons why overall interlayer bonding in biotite is weaker than in muscovite. First, the preferences of large (Rb, Cs)+ in biotite and of small La3+ and Na+ in muscovite indicate a relatively spacious interlayer volume in biotite (suggesting a longer mean K−O bond). Second, the preference of interlayer vacancies in biotite (with some/all possibly H2O/H3O+-filled) suggests that its adjacent 2:1 sheets are connected by fewer interlayer bonds per unit cell than those of muscovite. Third, the relative exclusion of large Ba2+ from biotite despite its large interlayer sites is attributed to O−H bonds pointing into the interlayer cavity sub-normal to (001); (K+, Ba2+)-H+ repulsion thereby induced by the bare proton both destabilizes Ba2+ and weakens K−O bonds. In contrast, muscovite offers a more favorable electrostatic environment for Ba2+ substitution since its O−H bonds are directed into the vacant M 1 octahedral site sub-parallel to (001). This hypothesis is supported by the observation that progressive F(OH)−1 exchange enhances Ba2+ partitioning into biotite/phlogopite relative to coexisting muscovite. These crystal-chemical differences between biotite and muscovite are mirrored in calculated values of “ionic porosity”, Z i , defined here as the percentage of their interlayer unit-cell volume not occupied by ions. A monitor of ionic packing density and geometry, Z i is inversely correlated with K−O bond strength, which appears to be the rate-determining “kinetic common denominator” for a variety of processes affecting micas – including those responsible for loss of radiogenic isotopes in biotite and muscovite. Accordingly, the relatively longer/weaker K−O bonds of biotite are envisioned as being more easily stretched (during volume diffusion) or broken (during recrystallization or retrograde alteration). This in turn accounts for common observations of enhanced radiogenic Ar/Sr loss and younger 40Ar/39Ar and Rb/Sr ages in natural biotite (high Z i ) relative to coexisting muscovite (lower Z i ). Significantly, this pattern may arise irrespective of isotopic loss mechanism (diffusion or recrystallization, etc.), and it follows that any age discordance observed between muscovite and biotite cannot be ascribed uniquely to one mechanism or the other without appropriate field, petrographic, and petrologic constraints. Extension of this partitioning/porosity-based synthesis leads to prediction of corollary age-retentivity-composition effects among chemically diverse trioctahedral and dioctahedral micas, which are best field tested in terranes that cooled slowly under dry, static conditions. Pressure effects on argon retention are also inferred from the porosity model. Received: 9 February 1995 / Accepted: 8 September 1995  相似文献   

13.
 A synthesis technique is described which results in >99% pure NH4-phlogopite (NH4) (Mg3) [AlSi3O10] (OH)2 and its deuterium analogue ND4-phlogopite (ND4) (Mg3) [AlSi3O10] (OD)2. Both phases are characterised using both IR spectroscopy at 298 and 77 K as well as Rietveld refinement of their X-ray powder diffraction pattern. Both NH4 + and ND4 + are found to occupy the interlayer site in the phlogopite structure. Absorption bands in the IR caused by either NH4 + or ND4 + can be explained to a good approximation using Td symmetry as a basis. Rietveld refinement indicates that either phlogopite synthesis contains several mica polytypes. The principle polytype is the one-layer monoclinic polytype (1M), which possesses the space group symmetry C2/m. The next most common polytype is the two-layer polytype (2M 1 ) with space group symmetry C2/c. Minor amounts of the trigonal polytype 3T with the space group symmetry P3112 were found only in the synthesis run for the ND4-phlogopite. Electron microprobe analyses indicate that NH4-phlogopite deviates from the ideal phlogopite composition with respect to variable Si/Al and Mg/Al on both the tetrahedral and octahedral sites, respectively, due to the Tschermaks substitution VIMg2++IVSi4+VIAl3++IVAl3+ and with respect to vacancies on the interlayer site due to the exchange vector XII(NH4)++IVAl3+XII□+IVSi4+. Received: 30 August 1999 / Accepted: 2 October 2000  相似文献   

14.
Relative humidity ( P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} , partial pressure of water)-dependent dehydration and accompanying phase transitions in NAT-topology zeolites (natrolite, scolecite, and mesolite) were studied under controlled temperature and known P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} conditions by in situ diffuse-reflectance infrared Fourier transform spectroscopy and parallel X-ray powder diffraction. Dehydration was characterized by the disappearance of internal H2O vibrational modes. The loss of H2O molecules caused a sequence of structural transitions in which the host framework transformation path was coupled primarily via the thermal motion of guest Na+/Ca2+ cations and H2O molecules. The observation of different interactions of H2O molecules and Na+/Ca2+ cations with host aluminosilicate frameworks under high- and low- P\textH 2 \textO P_{{{\text{H}}_{ 2} {\text{O}}}} conditions indicated the development of different local strain fields, arising from cation–H2O interactions in NAT-type channels. These strain fields influence the Si–O/Al–O bond strength and tilting angles within and between tetrahedra as the dehydration temperature is approached. The newly observed infrared bands (at 2,139 cm−1 in natrolite, 2,276 cm−1 in scolecite, and 2,176 and 2,259 cm−1 in mesolite) result from strong cation–H2O–Al–Si framework interactions in NAT-type channels, and these bands can be used to evaluate the energetic evolution of Na+/Ca2+ cations before and after phase transitions, especially for scolecite and mesolite. The 2,176 and 2,259 cm−1 absorption bands in mesolite also appear to be related to Na+/Ca2+ order–disorder that occur when mesolite loses its Ow4 H2O molecules.  相似文献   

15.
 K-richterite/phlogopite-bearing peridotite xenoliths and MARID inclusions have been found in Late Cretaceous (67±0.2 million years) monchiquites and an olivine nephelinite from North Eastern Morocco. It is the first evidence of MARID rocks and K-richterite/phlogopite-bearing peridotites outside the kimberlitic context. In the hydrous xenoliths, textural features suggest that K-richterite, phlogopite and Al-poor diopside are replacement minerals. K-richterites contain 2–5 wt% FeO, 0.1–1.5 wt% TiO2 and <0.5 wt% Cr2O3. Micas contain 5.4–7.4 wt% FeO and 0.3–2.2 wt% TiO2, with Cr and Ni contents <0.2 wt%. Diopsides are Al-poor (<0.2 wt% Al2O3) and contain 0.1–0.2 wt% TiO2, 0.9–1.1 wt% Na2O and 1.3–1.7 wt% Cr2O3. Compared to known K-richterites and micas from metasomatised peridotite nodules (PKP types), the Moroccan minerals are more Fe rich, K-richterites have higher Ti and micas less Cr and Ni. They are thus closer to MARID than to PKP minerals. K-richterites and mica from the MARID inclusions show typical characteristics, e.g. high FeO (4.3–4.7 wt% in richterite and 7.2 wt% in mica), low NiO and/or Cr2O3 and the incomplete filling of the tetrahedral site by Si+Al. Ion probe D/H analyses of amphiboles and micas from both xenolith types give high δD values ranging from –8 to –73, with large variations within single grains (up to 50‰). Both the D-enrichment and the δD variations are inherited from the mantle. The similar chemical composition and δD values of K-richterite/phlogopite from the hydrous peridotites and MARID minerals suggest a genetic link between the two types of xenoliths. The conditions required for producing MARIDs and K-richterite/phlogopite-bearing peridotites may thus exist in contexts other than stable cratonic settings. MARID rocks and the associated metasomites may result from a hydrous fluid interaction with a peridotite, the metasomatic agent being characterised by a high K and low Al signature and a high δD value. A D-rich source is involved in the metasomatic event producing the hydrous minerals, and the scatter observed in the δD values suggests a mixing between this source and another one with typical upper mantle D/H composition. As indicated by the low δD (–74) values of micas from the host lava, metasomatism predated and is unrelated to the alkaline volcanism. Received: 9 March 1995 / Accepted: 4 April 1996  相似文献   

16.
Titanium- and water-rich metamorphic olivine (Fo 86–88) is reported from partially dehydrated serpentinites from the Voltri complex, Ligurian Alps. The rocks are composed of mostly antigorite and olivine in addition to magnetite, chlorite, clinopyroxene and Ti-clinohumite. In situ secondary ion mass spectrometry (SIMS) data show that metamorphic olivine has very high and strongly correlated H2O (up to 0.7 wt%) and TiO2 contents (up to 0.85 wt%). Ti-rich olivine shows colourless to yellow pleochroism. Olivine associated with Ti-clinohumite contains low Ti, suggesting that Ti-rich olivine is not the breakdown product of Ti-clinohumite. Fourier transform infrared spectroscopy (FTIR) absorption spectra show peaks of serpentine, Ti-clinohumite and OH-related Si vacancies. Combining FTIR and SIMS data, we suggest the presence of clustered planar defects or nanoscale exsolutions of Ti-clinohumite in olivine. These defects or exsolutions contain more H2O (x ~ 0.1 in the formula 4Mg2SiO4·(1?x)Mg(OH,F)2·xTiO2) than Ti-clinohumite in the sample matrix (x = 0.34–0.46). In addition to TiO2 and H2O, secondary olivine contains significant Li (2–60 ppm), B (10–20 ppm), F (10–130 ppm) and Zr (0.9–2.1 ppm). It is enriched in 11B (δ11B = +17 to +23 ‰). Our data indicate that secondary olivine may play a significant role in transporting water, high-field strength and fluid-mobile elements into the deeper mantle as well as introduce significant B isotope anomalies. Release of hydrogen from H2O-rich olivine subducted into the deep mantle may result in strongly reduced mantle domains.  相似文献   

17.
The dependence of water concentration in synthetic (Mg, Fe2+)-cordierite on the composition of the solid solution was examined in experiments that lasted for 10 days at = 200–230 MPa, t = 600–700°C, and oxygen fugacity corresponding to the Fe-FeO buffer. Mass spectrometric data indicate that the dependence of water concentration in cordierite on its Fe mole fraction Fe2+/(Fe2+ + Mg) has maxima at compositions with F = 0.2–0.3. IR diffuse reflectance spectroscopic data and data on the structural setting of H2O molecules in the structural channels of alkali-free (Mg, Fe2+)-cordierite indicate that the H-H vector of some H2O molecules (H2O-II) is perpendicular to [001] of the crystal. The dependence of the magnetic properties of synthetic (Mg, Fe2+)-cordierite was studied by static magnetization technique at 5–300 K in an external magnetic field up to 20 kOe in strength.  相似文献   

18.
The bulk (post-eruptive) wt% FeO concentration in each of 11 phenocryst-poor (<5%) andesite and dacite (60–69 wt% SiO2) lavas from different monogenetic vents in the Mexican arc has been measured by titration, in duplicate. The results match, within analytical error, the wt% FeO content of the magmas during phenocryst growth (pre-euptive), which were calculated on the basis of oxygen fugacity and temperature results from Fe–Ti two-oxide oxygen barometry. The average deviation between the pre- and post-eruptive FeO concentrations is ±0.15 wt%. Application of the plagioclase-liquid hygrometer shows that at the time of phenocryst growth, these 11 magmas contained from ~3–8 wt% H2O, which was extensively degassed upon eruption. There is no evidence that degassing of ≤8 wt% H2O changed the oxidation state of these magmas. Calculations of pre-eruptive and post-eruptive oxygen fugacity values relative to the Ni-NiO buffer (in terms of log10 units) for the 11 samples span a similar range; pre-eruptive ∆NNO = −0.9 to +0.7 and post-eruptive ∆NNO = −0.4 to +0.8. The data further show that extensive groundmass (closed-system) crystallization had no affect on bulk Fe3+/Fe2+ ratios. Finally, there is no systematic variation in the range of pre-eruptive Fe3+/FeT values of the samples as a function of SiO2 concentration (i.e., differentiation). Therefore, the results of this study indicate that the elevated Fe3+/FeT ratios of arc andesites and dacites, compared with magmas erupted in other tectonic settings, cannot be attributed to the effects of (1) degassing of H2O, (2) closed-system crystallization, and/or (3) differentiation effects, but instead must be inherited from their parental source rocks (i.e., mantle-derived arc basalts).  相似文献   

19.
The present study illustrates the interest of using the elastic recoil detection analysis (ERDA) method to characterize any geological sample matrix with respect to hydrogen. ERDA is combined with Rutherford back scattering (RBS) and particle induced X-ray emission (PIXE), allowing the simultaneous characterization of the matrix with respect to major and trace elements (Z > 15). Analyses are performed by mapping of a 4 × 16 μm2 incident beam of 4He+ on large areas (50 × 200 μm2). The method is almost not destructive and requires no calibration with respect to well known hydrous samples. Hydrous and nominally anhydrous phases in contact with each other in the same sample may both be characterized. The depth of the analyses is limited to several μm beneath the surface, allowing tiny samples to be investigated, provided their sizes are larger than the incident beam. Our setup has been improved in order to allow H determination on a micrometric scale with a 5-15% relative uncertainty and a detection limit of 94 wt ppm H2O. We present multi-elemental mappings on a large panel of samples: (1) natural and analogue synthetic glasses from Stromboli volcano (0.44-4.59 wt% H2O), natural rhyolitic glasses (1466-1616 wt ppm H2O); (2) magmatic rhyolitic melt inclusions from Guadeloupe Island (4.37-5.47 wt% H2O) and their quartz host crystal (2020 ± 230 wt ppm H2O); (3) nominally anhydrous natural (82-260 wt ppm H2O) and experimentally hydrated (240-790 wt ppm H2O) olivines; natural clinopyroxenes (159-716 wt ppm H2O); natural orthopyroxenes (201-452 wt ppm H2O); a natural garnet (90 wt ppm H2O). Results show that ERDA is a strong and accurate reference method that can be used to characterize geological sample from various matrix compositions from high to low water contents. It can be used to calibrate other methods of microanalysis such as Fourier Transform Infrared Spectroscopy (FTIR) or secondary ion mass spectrometry (SIMS).  相似文献   

20.
In the aquatic geochemical literature, a redox half-reaction is normally written for a multi-electron process (n > 2); e.g., sulfide oxidation to sulfate. When coupling two multi-electron half-reactions, thermodynamic calculations indicate possible reactivity, and the coupled half-reactions are considered favorable even when there is a known barrier to reactivity. Thermodynamic calculations should be done for one or two-electron transfer steps and then compared with known reactivity to determine the rate controlling step in a reaction pathway. Here, thermodynamic calculations are presented for selected reactions for compounds of C, O, N, S, Fe, Mn and Cu. Calculations predict reactivity barriers and agree with one previous analysis showing the first step in reducing O2 to O2 ? with Fe2+ and Mn2+ is rate limiting. Similar problems occur for the first electron transfer step in these metals reducing NO3 ?, but if reactive oxygen species form or if two-electron transfer steps with O atom transfer occur, reactivity becomes favorable. H2S and NH4 + oxidation in a one-electron transfer step by O2 is also not favorable unless activation of oxygen can occur. H2S oxidation by Cu2+, Fe(III) and Mn(III, IV) phases in two-electron transfer steps is favorable but not in one-electron steps indicating that (nano)particles with bands of orbitals are needed to accept two electrons from H2S. NH4 + oxidation by Fe(III) and Mn(III, IV) phases is generally not favorable for both one- and two-electron transfer steps, but their reaction with hydroxylamine and hydrazine to form N2O and N2, respectively, is favorable. The anammox reaction using hydroxylamine via nitrite reduction is the most favorable for NH4 + oxidation. Other chemical processes including photosynthesis and chemosynthesis are considered for these element–element transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号