首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

2.
Upto 13% of -pinene and 3-carene had reacted after 213 s in this dark experimental set-up, where O3, NO and NO2 were mixed with terpenes at different relative humidities (RHs). The different experiments were planned according to an experimental design, where O3, NO2, NO, RH and reaction time were varied between high and low settings (25 and 75 ppb, 15 and 42%, 44 and 213 s). An increased amount of -pinene and 3-carene reacted in the chamber was observed, when the level of O3, NO and reaction time was increased and RH was decreased. In the study, it was found that different interactions affected the amount of terpene reacted as well. These interactions were between O3 and NO, O3 and reaction time, NO and RH, and between NO and reaction time.  相似文献   

3.
Atmospheric samples from savanna burnings were collected in the Ivory Coast during two campaigns in January 1989 and January 1991. About 30 nonmethane hydrocarbons from C2 to C6, carbon monoxide, carbon dioxide and methane were measured from the background and also at various distances from the burning. Concentrations in the fire plume reached ppmv levels for C2-C4 hydrocarbons, and 5300, 500 and 93 ppmv for CO2, CO and CH4 respectively. The excess in the mixing ratios of these gases above their background level is used to derive emission factors relative to CO and CO2. For the samples collected immediately in the fire plume, a differentiation between high and low combustion efficiency conditions is made by considering the CO/CO2 ratio. Ethene (C2H4), acetylene (C2H2), ethane (C2H6) and propene (C3H6) are the major NMHC produced in the flaming stage, whereas a different pattern with an increasing contribution of alkanes is observed in samples typical of post flaming processes. A strong correlation between methane and carbon monoxide suggests that these compounds are produced during the same stage of the combustion. In samples collected at a distance from the fire and integrated over a period of 30 minutes, the composition is very similar to that of flaming. NMHC/CO2 is of the order of 0.7%, CH4/CO2 of the order of 0.4% and CO/CO2 of the order of 6.3%. From this study, a global production by African savanna fires is derived: 65 Tg of CO-C, 4.2 Tg of CH4-C and 6.7 Tg of NMHC-C. Whereas acetylene can be used as a conservative tracer of the fire plumes, only ethene, propene and butenes can be considered in terms of their direct photochemical impact.  相似文献   

4.
Tropospheric photodissociation rate coefficients (J values) were calculated for NO2, O3, HNO2, CH2O, and CH3CHO using high spectral resolution (0.1 mm wavelength increments), and compared to the J values obtained with numerically degraded resolution (=1, 2, 4, 6, 8, and 10 nm, and several commonly used nonuniform grids). Depending on the molecule, substantial errors can be introduced by the larger increments. Thus for =10 nm, errors are less than 1% for NO2, less than 2% for HNO2, +6.5% to -16% for CH2O, -6.9% to +24% for CH3CHO, and -24% to +110% for O3. The errors for CH2O arise from the fine structure of its absorption spectrum, and are prevalently negative (underestimate of J). The errors for O3, and to a lesser extent for CH3CHO, arise mainly from under-resolving the overlap of the molecular action spectrum and the tropospheric actinic flux in the wavelength region of stratospheric ozone attenuation. The sign of those errors depends on whether the actinic flux is averaged onto the grid before or after the radiative transfer calculation. In all cases studied, grids with 2 nm produced errors no larger than 5%.  相似文献   

5.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

6.
Zusammenfassung Eine endliche Reihe (Sequenz) wird als eine der möglichen Permutationen ihrer Glieder aufgefaßt. Es wird gezeigt, daß die Summe der absoluten Differenzen der aufeinanderfolgenden Glieder gleich ist , wo die natürliche Zahlen sind und nur von der Rangordnung der Glieder der Reihe (von der Permutation) abhängen; die j sind von der Reihenfolge unabhängig und werden durch die Dispersion der Reihenglieder bestimmt. Die j und die j werden separat untersucht; der Erwartungswert der erwähnten Differenzsumme wird abgeleitet. Verschiedene bereits bekannte und auch erstmalig hier vorgeschlagene Maßzahlen werden geprüft. An Reihen jährlicher Regenmengen wird die Rolle der j und der j und das Verhalten der besprochenen Maßzahlen veranschaulicht.
Summary A series ofn members can be considered as one of the possible permutations of its members. It is shown that the sum of the linear successive differences is equal to the expression , where the j are positive integers, dependent only upon the rank-order (the permutation) of the members, while the j are independent of the order of the succession and are determined by the dispersion of the members of the series. The factors j and j are separately investigated; the expected value of the sum of the linear successive differences is established. Various related statistical measures, already in usage and new ones suggested here, are discussed. Series of yearly rainfall amounts are used to show the effects of the j and j and to discuss the behaviour of the various measures.

Résumé Une série, constituée parn valeurs, est regardée comme une des possibles permutations de ces valeurs. L'auteur montre que la somme des différences absolues, qui se présentent entre les valeurs consécutives de la série, est égale à l'expression . Les j sont des nombres entiers positifs et ne dépendent que de l'ordre des membres de la série, tandis que les j, indépendants de l'ordre, sont déterminés par la dispersion des membres. Les facteurs j et j sont étudiés séparément; l'espérance mathématique de la somme mentionnée est dérivée. Des paramètres statistiques déjà connus ou proposés ici pour la première fois, sont discutés. Le rôle des j et des j et le comportement des divers paramètres sont montrés à l'aide de séries de totaux annuels de pluies.
  相似文献   

7.
The standard deviation of vertical two-point longitudinal velocity fluctuation differences is analyzed experimentally with eleven sets of turbulence measurements obtained at the NASA 150-m ground-winds tower site at Cape Kennedy, Florida. It is concluded that /u *0 is proportional to (fz/u *0)0.22, where the coefficient of proportionality is a function of fz/u *0 and u *0/fL 0. The quantities f and L0 denote the Coriolis parameter and the surface Monin-Obukhov stability length, respectively; u *0 is the surface friction velocity; z is the vertical distance between the two points over which the velocity difference is calculated; and zz is the mean height of the mid-point of the interval z above natural grade. The results of the analysis are valid for 20<-u *0/fL 0<2000.  相似文献   

8.
Particulate content of savanna fire emissions   总被引:9,自引:0,他引:9  
As part of the FOS-DECAFE experiment at Lamto (Ivory Coast) in January 1991, various aerosol samples were collected at ground level near prescribed fires or under local background conditions, to characterize the emissions of particulate matter from the burning of savanna vegetation. This paper deals with total aerosol (TPM) and carbon measurements. Detailed trace element and polycyclic hydrocarbon data are discussed in other papers presented in this issue.Near the fire plumes, the aerosols from biomass burning are primarily of a carbonaceous nature (C%70% of the aerosol mass) and consist predominantly of submicron particles (more than 90% in mass.) They are characterized by their organic nature (black to total carbon ratio Cb/Ct in the range 3–20%) and their high potassium content (K/Cb0.6). These aerosols undergo aging during their first minutes in the atmosphere causing slight alterations in their size distribution and chemical composition. However, they remain enriched in potassium (K/Cb=0.21) and pyrene, a polycyclic aromatic hydrocarbon, such that both of these species may be used as tracers of savanna burning aerosols. We show that during this period of the year, the background atmosphere experiences severe pollution from both terrigenous sources and regional biomass burning (44% of the aerosol). Daynight variations of the background carbon concentrations suggest that fire ignition and spreading occur primarily during the day. Simultaneous TPM and CO2 real-time measurements point to a temporal and spatial heterogeneity of the burning so that the ratio of the above background concentrations (TPM/CO2) varies from 2 to 400 g/kg C. Smoldering processes are intense sources of particles but particulate emissions may also be important during the rapidly spreading heading fires in connection with the generation of heavy brown smoke. We propose emission factor values (EF) for aerosols from the savanna biomass burning aerosols: EF (TPM)=11.4±4.6 and 69±25 g/kg Cdry plant and EF(Ct)=7.4±3.4 and 56±16 g C/kg Cdry plant for flaming and smoldering processes respectively. In these estimates, the range of uncertainty is mostly due to the intra-fire variability. These values are significantly lower than those reported in the literature for the combustion of other types of vegetation. But due to the large amounts of vegetation biomass being burnt in African savannas, the annual flux of particulate carbon into the atmosphere is estimated to be of the order of 8 Tg C, which rivals particulate carbon emissions from anthropogenic activities in temperate regions.  相似文献   

9.
Impacts of climate change on vegetation are often summarized in biome maps, representing the potential natural vegetation class for each cell of a grid under current and changed climate. The amount of change between two biome maps is usually measured by the fraction of cells that change class, or by the kappa statistic. Neither measure takes account of varying structural and floristic dissimilarity among biomes. An attribute-based measure of dissimilarity (V) between vegetation classes is therefore introduced. V is based on (a) the relative importance of different plant life forms (e.g. tree, grass) in each class, and (b) a series of attributes (e.g. evergreen-deciduous, tropical-nontropical) of each life form with a weight for each attribute. V is implemented here for the most used biome model, BIOME 1 (Prentice, I. C. et al., 1992). Multidimensional scaling of pairwise V values verifies that the suggested importance values and attribute weights lead to a reasonable pattern of dissimilarities among biomes. Dissimilarity between two maps (V) is obtained by area-weighted averaging of V over the model grid. Using V, present global biome distribution from climatology is compared with anomaly-based scenarios for a doubling of atmospheric CO2 concentration (2 × CO2), and for extreme glacial and interglacial conditions. All scenarios are obtained from equilibrium simulations with an atmospheric general circulation model coupled to a mixed-layer ocean model. The 2 × CO2 simulations are the widely used OSU and GFDL runs from the 1980's, representing models with low and high climate sensitivity, respectively. The palaeoclimate simulations were made with CCM1, with sensitivity similar to GFDL. V values for the comparisons of 2 × CO2 with present climate are similar to values for the comparisons of the last interglacial and mid-Holocene with present climate. However, the two simulated 2 × CO2 cases are much more like each other than they are to the simulated interglacial cases. The largest V values were between the last glacial maximum and all other cases, including the present. These examples illustrate the potential of V in comparing the impacts of different climate change scenarios, and the possibility of calibrating climate change impacts against a palaeoclimatic benchmark.  相似文献   

10.
BORIS SEVRUK 《Climatic change》1997,36(3-4):355-369
The spatial distribution of the regional long-term rate of precipitation change, P, with altitude in Switzerland is analysed. In order to eliminate the bias of point precipitation measurement, the analysis is based on precipitation sums corrected for the systematic error of precipitation measurement, particularly the wind-induced error and wetting losses. The P values indicate a large spatial heterogeneity. They show different local and regional patterns. In this respect, the effect of the main alpine ridge dividing the Swiss territory into northern and southern parts is crucial. Water budget computations indicate that the regional P values have a tendency to overestimate areal precipitation. The possible reasons are the redistribution of precipitation by wind and its accumulation in the valleys and, at the same time, the biased precipitation networks preferring location of gauges also in the valleys.  相似文献   

11.
Refuge has patchy vegetation in sandy soil. During midday and at night, the surface sources and sinks for heat and moisture may thus be different. Although the Sevilleta is broad and level, its metre-scale heterogeneity could therefore violate an assumption on which Monin-Obukhov similarity theory (MOST) relies. To test the applicability of MOST in such a setting, we measured the standard deviations of vertical (w) and longitudinal velocity (u), temperature (t), and humidity (q), the temperature-humidity covariance (¯tq), and the temperature skewness (St). Dividing the former five quantities by the appropriate flux scales (u*, *, and q*) yielded the nondimensional statistics w/u*, u/u*, t/|t*|, q/|q*|, and ¯tq/t*q*. w/u*, t/|t*|, and St have magnitudes and variations with stability similar to those reported in the literature and, thus, seem to obey MOST. Though u/u* is often presumed not to obey MOST, our u/u* data also agree with MOST scaling arguments. While q/|q*| has the same dependence on stability as t/|t*|, its magnitude is 28% larger. When we ignore ¯tq/t*q* values measured during sunrise and sunset transitions – when MOST is not expected to apply – this statistic has essentially the same magnitude and stability dependence as (t/t*)2. In a flow that truly obeys MOST, (t/t*)2, (q/q*)2, and ¯tq/t*q* should all have the same functional form. That (q/q*)2 differs from the other two suggests that the Sevilleta has an interesting surface not compatible with MOST. The sources of humidity reflect the patchiness while, despite the patchiness, the sources of heat seem uniformly distributed.  相似文献   

12.
The stability of the climate-vegetation system in the northern high latitudesis analysed with three climate system models of different complexity: A comprehensive 3-dimensional model of the climate system, GENESIS-IBIS, and two Earth system models of intermediate complexity (EMICs), CLIMBER-2 andMoBidiC. The biogeophysical feedback in the latitudinal belt 60–70° N, although positive, is not strong enough to support multiple steady states: A unique equilibriumin the climate-vegetation system is simulated by all the models on a zonal scale for present-day climate and doubled CO2 climate.EMIC simulations with decreased insolation also reveal a unique steady state. However, the climate sensitivity to tree cover, TF, exhibits non-linear behaviour within the models. For GENESIS-IBIS and CLIMBER-2, TF islower for doubled CO2 climate than for present-day climate due to a shorter snow season and increased relative significance ofthe hydrological effect of forest cover. For the EMICs, TF is higher for low tree fraction than for high treefraction, mainly due to a time shift in spring snow melt in response to changes in tree cover. The climate sensitivity to tree coveris reduced when thermohaline circulation feedbacks are accounted for in the EMIC simulations. Simpler parameterizations of oceanic processes have opposite effects on TF: TF is lower in simulations with fixed SSTs and higher in simulations with mixed layer oceans. Experiments with transient CO2 forcing show climate and vegetation not in equilibrium in the northern high latitudes at the end of the 20thcentury. The delayed response of vegetation and accelerated global warming lead to rather abrupt changes in northern vegetation cover in the first halfof the 21st century, when vegetation cover changes at double the present day rate.  相似文献   

13.
Summary The effect of the Alpine orography on prototype cold fronts approaching from the west is investigated by three-dimensional numerical model simulations. The numerical experiments cover a range of parameter constellations which govern the prefrontal environment of the front. Especially, the appearance and intensity of prefrontal northern Alpine foehn varies from case to case.The behaviour of a cold front north of the Alps depends much on the prefrontal condition it encounters. It is found that prefrontal foehn can either accelerate or retard the approaching front.An important feature is the pressure depression along the northern Alpine rim that results from the southerly foehn flow. In cases where this depression compensates the eastward directed pressure gradient associated with the largescale flow, the front tends to accelerate and the foehn breaks down as soon as the front passes. In contrast, the foehn prevents the front from a rapid eastward propagation if it is connected with a strong southerly wind component.No-foehn experiments are performed for comparison, where either the mountains are removed, or the static stability is set to neutral. Also shown are effects of different crossfrontal temperature contrasts.List of Symbols c F propagation speed of a front - x, y horizontal grid spacing (cartesian system) - , horizontal grid spacing (geographic system) - t time step - z vertical grid spacing (cartesian system) - cross-frontal potential temperature difference - i potential temperature step at an inversion - E turbulent kinetic energy - f Coriolis parameter - FGP frontogenesis parameter (see section 2.2) - g gravity acceleration (g=9.81 m s–2) - vertical gradient of potential temperature - h terrain elevation (above MSL) - h i height of an inversion (h i =1000 m MSL) - H height of model lid (H=9000 m MSL) - K M exchange coefficient of momentum - K H exchange coefficient of heat and moisture - longitude - N Brunt-Väisäla-frequency - p pressure - Exner function (=T/) - latitude - q v specific humidity - R d gas constant of dry air (R d =287.06 J kg–1 K–1) - density of dry air - t time - T temperature - potential temperature - TFP thermal front parameter (see section 2.2) - u, v, w cartesian wind components - u g ,v g geostrophic wind components - horizontal wind vector - x, y, z cartesian coordinates Abbreviations GND (above) ground level - MSL (above) mean sea level - UTC universal time coordinated With 20 Figures  相似文献   

14.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

15.
We formulate a method for determining the smallest time interval Tover which a turbulence time series can be averaged to decompose it intoinstantaneous mean and random components. From the random part the method defines the optimal interval (or averaging window) AW over which this part should be averaged to obtain the instantaneous spectrum. Both T and AW vary randomly with time and depend on physical properties of the turbulence. T also depends on the accuracy of the measurements and is thus independent of AW. Interesting features of the method are its real-time capability and the non-equality between AW and T.  相似文献   

16.
The well calibrated Brewer spectrophotometer 17 (Sci-Tec Instruments Inc., Canada) stayed at the Meteorological Observatory Hohenpeissenberg (MOHP) from August 27 until September 1, 1984, in order to check and recalibrate Brewer 10, which had some stability problems. Brewer 17 was initially calibrated in July 1983, the validity of this calibration was repeatedly verified before and after the stay at the MOHP (Kerr et al., 1985; Kerr, 1984). The instrument proved itself to be very stable and appropriate as travellings standard instrument.As Dobson 104 didn't seem to be well calibrated at that time, the occasion was taken to perform also a Dobson recalibration. The methods normally used were not satisfactory, but a different method, presuming Effective Absorption Coefficients (EAC), presented by Kerr et al. at the Quadrennial Ozone Symposium 1984 in Greece, yielded encouraging results. Before recalibration Dobson 104 showed a difference of 2–3% in comparison to Brewer 10-, Brewer 17- and TOMS- (on satellite Nimbus 7) measurements, whereas the agreement with the Brewers after EAC-calibration was good (X rel < 1%). The different Dobson calibration methods are compared and the results of the Dobson 104 and Brewer 10 recalibrations are presented.
Zusammenfassung Vom 27. August bis 1. September 1984 befand sich das Brewer Standard Spektrophotometer 17 (Sci-Tec Instruments Inc., Canada) am Meteorologischen Observatorium Hohenpeißenberg (MOHP), um den nicht sehr stabilen Brewer 10 zu überprüfen und neu zu kalibrieren. Der Brewer 17 wurde erstmals im Juli 1983 kalibriert, die Gültigkeit dieser Eichung wurde mehrfach vor und einmal nach dem Aufenthalt am MOHP bestätigt (Kerr et al., 1985; Kerr, 1984). Das Instrument erwies sich als sehr stabil und geeignet als transportables Standardinstrument.Da der Dobson 104 zum damaligen Zeipunkt ebenfalls nicht gut kalibriert schien, wurde die Gelegenheit einer Dobson-Neukalibrierung wahrgenommen. Die normalerweise benutzten Methoden waren nicht zufriedenstellend im Gegensatz zu einer Methode, die von Effektiven Absorption Coeffizienten (EAC) ausgeht. Diese von Kerr et al. auf dem Quadrennial Ozon Symposium 1984 in Griechenland vorgestellte Methode lieferte hier ermutigende Ergebnisse. Vor der Neueichung zeigte der Dobson 104 eine Differenz von etwa 2–3% im Vergleich mit Brewer 10-, Brewer 17- und TOMS- (auf dem Nimbus-7-Satelliten) Messungen, während die Übereinstimmung mit den Brewer-Geräten nach der EAC-Kalibrierung gut war (X rel < 1%). Die verschiedenen Dobson-Kalibrierungsmethoden werden verglichen und Ergebnisse der Dobson 104- und Brewer 10-Neukalibrierungen werden vorgestellt.
  相似文献   

17.
A two dimensional model has been set up to investigate the circulation induced by an urban heat island in the absence of synoptic winds. The boundary conditions need to be formulated carefully and due to difficulties arising here, we restrict our attention to cases of initially stable thermal stratification. Heat island circulations are allowed to develop from rest and prior to the appearance of the final symmetric double cell pattern, a transitional multi-cell pattern is observed in some cases. The influence on the steady state circulation of various parameters is studied, among which are eddy transfer coefficients, the heat island intensity, the initial temperature stratification and the heat island size. Some results are presented for a case in which differential surface cooling beneath an initially stable atmosphere produces a circulation and an unstable layer capped by an elevated inversion over the city. It is hoped that this case is vaguely representative of the night-time heat island with no geostrophic wind.Notation cp Specific heat at constant pressure - g Acceleration due to gravity - H Top of integration region - Kz Vertical eddy transfer coefficient - Kx, KxH, Kxm Horizontal eddy transfer coefficients for heat and momentum - l ixing length - p Pressure - p0 Reference surface pressure (1000 mb) - PH (x, t) Pressure at z = H - R Specific gas constant for dry air - t Time - u, w Horizontal and vertical velocities - x, z Horizontal and vertical coordinates - x1, x2 Positions of discontinuities in surface temperature field (see Figure 2) - xa Heat island half-width - xb Boundary of integration region - Parameter in formula for eddy coefficients (variable-K case) = 18.0 - s Intensity of heat island - Potential temperature field - Reference absolute temperature (variable-K case) - r Reference temperature (° C) - s Surface temperature - Q Air density  相似文献   

18.
Gaseous nitrogen compounds (NO x , NO y , NH3, N2O) were measured at ground level in smoke plumes of prescribed savanna fires in Lamto, in the southern Ivory Coast, during the FOS/DECAFE experiment in January 1991. During the flaming phase, the linear regression between [NO x ] and [CO2] (differences in concentration between smoke plumes and atmosheric background) results volumic emission ratio [NO x ]/[CO2]=1.37×10–3 with only slight differences between heading and backing fires. Nearly 90% of the nitrogen oxides are emitted as NO. Average emission ratios of other compounds are: 1.91, 0.047, and 0.145×10–3 for NO y , NH3 and N2O, respectively. The emission ratios obtained during this field experiment are compred with corresponding values measured during former experiments with the same plant species in combustion chambers. An accurate determination of both the biomass actually burned and of the plant nitrogen content, allows an assessment of emission fluxes of N-compounds from Guinean savanna burns. Preliminary results dealing with the influence of fire on biogenic emissions from soils are also reported.  相似文献   

19.
Ralf Greve 《Climatic change》2000,46(3):289-303
Numerical computations are performed with the three-dimensional polythermal ice-sheet model SICOPOLIS in order to investigate the possible impact of a greenhouse-gas-induced climate change on the Greenland ice sheet. The assumed increase of the mean annual air temperature above the ice covers a range from T = 1°C to 12°C, and several parameterizations for the snowfall and the surface melting are considered. The simulated shrinking of the ice sheet is a smooth function of the temperature rise, indications for the existence of critical thresholds of the climate input are not found. Within 1000 model years, the ice-volume decrease is limited to 10% of the present volume for T 3°C, whereas the most extreme scenario, T = 12°C, leads to an almost entire disintegration, which corresponds to a sea-level equivalent of 7 m. The different snowfall and melting parameterizations yield an uncertainty range of up to 20% of the present ice volume after 1000 model years.  相似文献   

20.
THE EJECTION-SWEEP CHARACTER OF SCALAR FLUXES IN THE UNSTABLE SURFACE LAYER   总被引:3,自引:2,他引:1  
In the atmospheric surface layer, it is widely accepted that ejection andsweep eddy motions, typically associated with coherent structures, areresponsible for much of the land-surface evaporation, sensible heat, andmomentum fluxes. The present study analyzes the ejection-sweep propertiesusing velocity and scalar fluctuation measurements over tall natural grassand bare soil surfaces. It is shown that momentum ejections and sweeps occurat equal frequencies (D eject D sweep 0.29) irrespective of surfaceroughness length or atmospheric stability conditions. Also, their magnitudesare comparable to values reported from open channel velocity measurements (Dsweep 0.33; D eject : 0.30). The scalar D eject is constant andsimilar in magnitude to the momentum D eject( 0.29) over both surfacesand for a wide range of atmospheric stability conditions, in contrast to thescalar D sweep. The scalar sweep frequency is shown to depend on the scalarskewness for the dynamic convective and free convective sublayers, but isidentical to D eject for the dynamic sublayer. The threshold scalar skewnessat which the D sweep dependence occurs is 0.25, in agreement with theaccepted temperature skewness value at near-neutral conditions. In contrastto a previous surface-layer experiment, this investigation demonstrates thatthe third-order cumulant expansion method (CEM) reproduces the measuredrelative flux contribution of ejections and sweeps (S0) for momentumand scalars at both sites. Furthermore, a linkage between S0 and thescalar variance budget is derived via the third-order CEM in analogy tomomentum. It is shown that S0 can be related to the flux divergenceterm and that such a relationship can be estimated from surface-layersimilarity theory, and the three sublayer model of Kader and Yaglom andproposed similarity functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号