首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

2.
We use teleseismic three-component digital data from the Trabzon, Turkey broadband seismic station TBZ to model the crustal structure by the receiver function method. The station is located at a structural transition from continental northeastern Anatolia to the oceanic Black Sea basin. Rocks in the region are of volcanic origin covered by young sediments. By forward modelling the radial receiver functions, we construct 1-D crustal shear velocity models that include a lower crustal low-velocity zone, indicating a partial melt mechanism which may be the source of surfacing magmatic rocks and regional volcanism. Within the top 5 km, velocities increase sharply from about 1.5 to 3.5 km s−1. Such near-surface low velocities are caused by sedimentation, extending from the Black Sea basin. Velocities at around 20 km depth have mantle-like values (about 4.25 km s−1 ), which easily correlate to magmatic rocks cropping out on the surface. At 25 km depth there is a thin low-velocity layer of about 4.0 km s−1. The average Moho velocity is about 4.6 km s−1, and its depth changes from 32 to 40 km. Arrivals on the tangential components indicate that the Moho discontinuity dips approximately southwards, in agreement with the crustal thickening to the south. We searched for the solution of receiver functions around the regional surface wave group velocity inversion results, which helped alleviate the multiple solution problem frequently encountered in receiver function modelling.
Station TBZ is a recently deployed broadband seismic station, and the aim of this study is to report on the analysis of new receiver function data. The analysis of new data in such a structurally complex region provides constraining starting models for future structural studies in the region.  相似文献   

3.
We present velocity constraints for the upper-mantle transition zones beneath Central Siberia based on observations of the 1982 RIFT Deep Seismic Sounding (DSS) profile. The data consist of seismic recordings of a nuclear explosion in north-western Siberia along a 2600 km long seismic profile extending from the Yamal Peninsula to Lake Baikal. We invert seismic data from the mantle transition zones using a non-linear inversion scheme using a genetic algorithm for optimization and the WKBJ method to compute the synthetic seismograms. A statistical error analysis using a graph-binning technique was performed to provide uncertainty values in the velocity models.
Our best model for the upper-mantle velocity discontinuity near 410 km depth has a two-stage velocity-gradient structure, with velocities increasing from 8.70–9.25 km s−1 over a depth range of 400–415 km, a gradient of 0.0433 s−1, and from 9.25–9.60 km s−1 over a depth range of 415–435 km, a gradient of 0.0175 s−1. This derived model is consistent with other seismological observations and mineral-physics models. The model for the velocity discontinuity near 660 km depth is simple, sharp and includes velocities increasing from 10.15 km s−1 at 655 km depth to 10.70 km s−1 at 660 km depth, a gradient of 0.055 s−1.  相似文献   

4.
We have analysed the fundamental mode of Love and Rayleigh waves generated by 12 earthquakes located in the mid-Atlantic ridge and Jan Mayen fracture zone. Using the multiple filter analysis technique, we isolated the Rayleigh and Love wave group velocities for periods between 10 and 50  s. The surface wave propagation paths were divided into five groups, and average group velocities calculated for each group. The average group velocities were inverted and produced shear wave velocity models that correspond to a quasi-continental oceanic structure in the Greenland–Norwegian Sea region. Although resolution is poor at shallow depth, we obtained crustal thickness values of about 18  km in the Norwegian Sea area and 9  km in the region between Svalbard and Iceland. The abnormally thick crust in the Norwegian Sea area is ascribed to magmatic underplating and the thermal blanketing effect of sedimentary layers. Maximum crustal shear velocities vary between 3.5 and 3.9  km  s−1 for most paths. An average lithospheric thickness of 60  km was observed, which is lower than expected for oceanic-type structure of similar age. We also observed low shear wave velocities in the lower crust and upper mantle. We suggest that high heat flow extending to depths of about 30  km beneath the surface can account for the thin lithosphere and observed low velocities. Anisotropy coefficients of 1–5 per cent in the shallow layers and >7 per cent in the upper mantle point to the existence of polarization anisotropy in the region.  相似文献   

5.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

6.
An Mw 5.9 earthquake occurred in the Lake Rukwa rift, Tanzania, on 1994 August 18, and was well recorded by 20 broad-band seismic stations at distances of 160 to 800 km and 21 broad-band stations at teleseismic distances. The regional and teleseismic waveforms have been used to investigate the source characteristics of the main shock, and also to locate aftershocks that occurred within three weeks of the main shock. Teleseismic body-wave modelling yields the following source parameters for the main shock: source depth of 25 ± 2 km, a normal fault orientation, with a horizontal tension axis striking NE-SW and an almost vertical pressure axis (Nodal Plane I: strike 126°–142°, dip 63°–66°, and rake 280°–290°; Nodal Plane II: strike 273°–289°, dip 28°–31°, and rake 235°–245°), a scalar moment of 4.1 times 1017 N m, and a 2 s impulsive source time function. Four of the largest aftershocks also nucleated at depths of 25 km, as deduced from regional sPmp–Pmp times. The nodal planes are broadly consistent with the orientation of both the Lupa and Ufipa faults, which bound the Rukwa rift to the northeast and southwest, respectively. The rupture radius of the main shock, assuming a circular fault, is estimated to be 4 km with a corresponding stress drop of 6.5 MPa. Published estimates of crustal thickness beneath the Rukwa rift indicate that the foci of the main shock and aftershocks lie at least 10 km above the Moho. The presence of lower-crustal seismicity beneath the Rukwa rift suggests that the pre-rift thermal structure of the rifted crust has not been strongly modified by the rifting, at least to depths of 25 km.  相似文献   

7.
We use annual GPS observations on the Reykjanes Peninsula (RP) from 2000 to 2006 to generate maps of surface velocities and strain rates across the active plate boundary. We find that the surface deformation on the RP is consistent with oblique plate boundary motion on a regional scale, although considerable temporal and spatial strain rate variations are observed within the plate boundary zone. A small, but consistent increase in eastward velocity is observed at several stations on the southern part of the peninsula, compared to the 1993–1998 time period. The 2000–2006 velocities can be modelled by approximating the plate boundary as a series of vertical dislocations with left-lateral motion and opening. For the RP plate boundary we estimate left-lateral motion  18+4−3 mm yr−1  and opening of  7+3−2 mm yr−1  below a locking depth of  7+1−2 km  . The resulting deep motion of  20+4−3 mm yr−1  in the direction of  N(100+8−6)°E  agrees well with the predicted relative North America–Eurasia rate. We calculate the areal and shear strain rates using velocities from two periods: 1993–1998 and 2000–2006. The deep motion along the plate boundary results in left-lateral shear strain rates, which are perturbed by shallow deformation due to the 1994–1998 inflation and elevated seismicity in the Hengill–Hrómundartindur volcanic system, geothermal fluid extraction at the Svartsengi power plant, and possibly earthquake activity on the central part of the peninsula.  相似文献   

8.
Joint inversion of receiver function and surface wave dispersion observations   总被引:16,自引:0,他引:16  
We implement a method to invert jointly teleseismic P wave receiver functions and surface wave group and phase velocities for a mutually consistent estimate of earth structure. Receiver functions are primarily sensitive to shear wave velocity contrasts and vertical traveltimes, and surface wave dispersion measurements are sensitive to vertical shear wave velocity averages. Their combination may bridge resolution gaps associated with each individual data set. We formulate a linearized shear velocity inversion that is solved using a damped leastsquares scheme that incorporates a priori smoothness constraints for velocities in adjacent layers. The data sets are equalized for the number of data points and physical units in the inversion process. The combination of information produces a relatively simple model with a minimal number of sharp velocity contrasts. We illustrate the approach using noisefree and realistic noise simulations and conclude with an inversion of observations from the Saudi Arabian Shield. Inversion results for station SODA, located in the Arabian Shield, include a crust with a sharp gradient near the surface (shear velocity changing from 1.8 to 3.5 km s1 in 3 km) underlain by a 5kmthick layer with a shear velocity of 3.5 km s1 and a 27kmthick layer with a shear velocity of 3.8 km s1, and an upper mantle with an average shear velocity of 4.7 km s1. The crustmantle transition has a significant gradient, with velocity values varying from 3.8 to 4.7 km s1 between 35 and 40 km depth. Our results are compatible with independent inversions for crustal structure using refraction data.  相似文献   

9.
Summary. Group velocities for first and second higher mode Rayleigh waves, in the frequency range 0.8–4.8 Hz, generated from a local earthquake of magnitude 3.7 M L in western Scotland, are measured at stations along the 1974 LISPB line. These provide detailed information about the crustal structure west of the line. The data divide the region into seven apparently homogeneous provinces. Averaged higher mode velocity dispersion curves for each province are analysed simultaneously using a linearized inversion technique, yielding regionalized shear velocity profiles down to a depth of 17 km into the upper crust. Shear wave velocity is between 3.0 and 3.4 km s−1 in the upper 2 km, with a slow increase to around 3.8 km s−1. P -wave models computed using these results agree with profiles from the LISPB and LUST refraction experiments.  相似文献   

10.
A moderate earthquake of   M w= 6.8  occurred on 2003 December 10. It ruptured the Chihshang Fault in eastern Taiwan which is the most active segment of the Longitudinal fault as a plate suture fault between the Luzon arc of the Philippine Sea plate and the Eurasian plate. The largest coseismic displacements were 13 cm (horizontal) and 26 cm (vertical). We analyse 40 strong motion and 91 GPS data to model the fault geometry and coseismic dislocations. The most realistic shape of the Chihshang fault surface is listric in type. The dipping angle of the seismic zone is steep (about 60°–70°) at depths shallower than 10 km and then gradually decreases to 40°–50° at depths of 20–30 km. Thus the polygonal elements in Poly3D are well suited for modelling complex surfaces with curving boundaries. Using the strong motion data, the displacement reaches 1.2 m dip-slip on the Chihshang Fault and decreases to 0.1 m near surface. The slip averages 0.34 m, releasing a scalar moment of 1.6E26 dyne-cm. For GPS data, our model reveals that the maximal dislocation is 1.8 m dip-slip. The dislocations decrease to 0.1 m near the surface. The average slip is 0.48 m, giving a scalar moment of 2.2E26 dyne-cm. Regarding post-seismic deformation, a displacements of 0.5 m were observed near the Chihshang Fault, indicating the strain had not been totally released, as a probable result of near-surface locking of the fault zone.  相似文献   

11.
We invert surface-wave and geodetic data for the spatio-temporal complexity of slip during the M w =8.1 Chile 1995 event by simulated annealing. This quasi-global inversion method allows for a wide exploration of model space, and retains the non-linearity of the source tomography problem. Complex source spectra are obtained from 5 to 45 mHz from first- and second-orbit fundamental-mode Rayleigh waves using an empirical Green's function cross-correlation technique. Coseismic displacement vectors were measured at 10 GPS sites near Antofagasta. They are part of a French-Chilean experiment which monitors the Northern Chile seismic gap. The spectra, together with the geodetic data, are inverted for the moment distribution on a 2-D dipping fault, under the physical constraints of slip positivity and causality. Marginal a posteriori distributions of the model parameters are obtained from several independently inverted solutions. In general, features of the slip model are well resolved. Data are well fitted by a purely unilateral southward rupture with a nearly uniform velocity around 2.5–3.0 km s−1, and a total duration of 65 s. Several regions of moment release were imaged, one near the hypocentre, a major one 80 km south of it and a minor one 160 km south of it. The major patch of moment release seemed to have propagated to relatively shallow depths near the trench, 100 km SSW of the epicentre. The region of major slip is located updip of the 1987, M w =7.5 earthquake, suggesting a causal relationship. Most of the slip occurred updip of the hypocentre (36 km), but the entire coupled plate interface (20–40 km) ruptured during the Chile 1995 event.  相似文献   

12.
The crustal and upper mantle structure of the northwestern North Island of New Zealand is derived from the results of a seismic refraction experiment; shots were fired at the ends and middle of a 575 km-long line extending from Lake Taupo to Cape Reinga. The principal finding from the experiment is that the crust is 25 ± 2 km thick, and is underlain by what is interpreted to be an upper mantle of seismic velocity 7.6 ± 0.1 km s−1, that increases to 7.9 km s−1 at a depth of about 45 km. Crustal seismic velocities vary between 5.3 and 6.36 km s−1 with an average value of 6.04 km s−1. There are close geophysical and geological similarities between the north-western North Island of New Zealand and the Basin and Range province of the western United States. In particular, the conditions of low upper-mantle seismic velocities, thin crust with respect to surface elevation, and high heat-flow (70–100 mW m−2) observed in these two areas can be ascribed to their respective positions behind an active convergent margin for about the past 20 Myr.  相似文献   

13.
Upper mantle shear structure of North America   总被引:5,自引:0,他引:5  
Summary. The waveforms and travel times of S and SS phases in the range 10°–60° have been used to derive upper mantle shear velocity structures for two distinct tectonic provinces in North America. Data from earthquakes on the East Pacific Rise recorded at stations in western North America were used to derive a tectonic upper mantle model. Events on the north-west coast of North America and earthquakes off the coast of Greenland provided the data to investigate the upper mantle under the Canadian shield. All branches from the triplications due to velocity jumps near 400 and 660 km were observed in both areas. Using synthetic seismograms to model these observations placed tight constraints on heterogeneity in the upper mantle and on the details of its structure. SS–S travel-time differences of 30 s along with consistent differences in waveforms between the two data sets require substantial heterogeneity to at least 350 km depth. Velocities in the upper 170 km of the shield are about 10 per cent higher than in the tectonic area. At 250 km depth the shield velocities are still greater by about 4.5 per cent and they gradually merge near 400 km. Below 400 km no evidence for heterogeneity was found. The two models both have first-order discontinuities of 4.5 per cent at 405 km and 7.5 per cent at 695 km. Both models also have lids with lower velocities beneath. In the western model the lid is very thin and of relatively low velocity. In the shield the lid is 170 km thick with very high elocity (4.78 km s-1); below it the velocity decreases to about 4.65 km s-1. Aside from these features the models are relatively smooth, the major difference between them being a larger gradient in the tectonic region from 200 to 400 km.  相似文献   

14.
Summary. A tripartite ocean-bottom seismograph array at the junction of the East Pacific Rise and Rivera Fracture Zone recorded an eathquake sequence, consisting of three main shocks ( m B= 4.3, 4.3 and 4.8) and numerous aftershocks from the fracture zone, in the distance range 35–50 km. Delineation of the rupture zones by aftershocks indicates that the first two main shocks took place on overlapping fault areas, while the third occurred over a fault area separated from the first by several kilometres. Both rupture zones were about 4 km long. Surface wave spectra indicate a shallow (about 3 km below the sea floor) source, as does OBS array phase velocity data. The seismic moments, obtained from teleseismic surface wave data, of 1.3, 2.1 and 2.8 × 1023 dyn cm, with the fault areas as delineated by aftershocks, imply a stress drop of about 8 bars for the main shocks. Aftershock sequences of each of the main shocks are similar, with a b -value of about 0.65. Teleseismic P travel times are similar to those from near-surface sources in Nevada.  相似文献   

15.
Summary. Broadband seismograms from the National Seismic Network of the People's Republic of China (PRC) have recently become available through a data exchange programme between NOAA and the State Seismological Bureau of the PRC. In this study, regional surface waves recorded at the Urumchi station located about 700 km north of the Tibetan Plateau in the Sinkiang Province are used to study East Kazakh explosions and wave propagation in central Asia. The data consist of broadband (flat to displacement between 0.1 and 10 Hz), photographic records from an SK Kirnos galvanometric system. Simultaneous inversion of Rayleigh wave phase and group velocities for the path from East Kazakh through the Dzhungarian Basin yields a crustal model dominated by the presence of very low velocities and a strong positive velocity gradient above 15 km depth. Velocities below 15 km depth are not significantly different from other continental structures underlain by Palaeozoic or Precambrian basement. Seismic moments were estimated for seven East Kazakh explosions using models of explosion sources with associated tectonic strain release. The largest explosion studied occurred on 1980 September 14 and had an mb of 6.2 and a seismic moment of 2.7 × 1023 dyn cm. The observed amplitude spectra of Rayleigh waves are richer in high frequencies than spectra calculated from our models. This could be caused by a path effect involving seismic wave focusing by the Dzhungarian Basin, although source medium effects cannot be ruled out.  相似文献   

16.
The highest intermediate depth moment release rates in Indonesia occur in the slab beneath the largely submerged segment of the Banda arc in the Banda Sea to the east of Roma, termed the Damar Zone. The most active, western-part of this zone is characterized by downdip extension, with moment release rates (∼1018 Nm yr–1 per 50 km strike length) implying the slab is stretching at ∼10−14 s−1 consistent with near complete slab decoupling across the 100–200 km depth range. Differential vertical stretching along the length of the Damar Zone is consistent with a slab rupture front at ∼100–200 km depth beneath Roma propagating eastwards at ∼100 km Myr–1. Complexities in the slab deformation field are revealed by a narrow zone of anomalous in-plane P -axis trends beneath Damar, where subhorizontal constriction suggests extreme stress concentrations ∼100 km ahead of the slab rupture front. Such stress concentrations may explain the anomalously deep ocean gateways in this region, in which case ongoing slab rupture may have played a key role in modulating the Indonesian throughflow in the Banda Sea over the last few million years.  相似文献   

17.
We describe a waveform modelling technique and demonstrate its application to determine the crust- and upper-mantle velocity structure beneath Africa. Our technique uses a parallelized reflectivity method to compute synthetic seismograms and fits the observed waveforms by a global optimization technique based on a Very Fast Simulated Annealing (VFSA). We match the S , Sp, SsPmP and shear-coupled PL phases in seismograms of deep (200–800 km), moderate-to-large magnitude (5.5–7.0) earthquakes recorded teleseismically at permanent broad-band seismic stations in Africa. Using our technique we produce P - and S -wave velocity models of crust and upper mantle beneath Africa. Additionally, our use of the shear-coupled PL phase, wherever observed, improves the constraints for lower crust- and upper-mantle velocity structure beneath the corresponding seismic stations. Our technique retains the advantages of receiver function methods, uses a different part of the seismogram, is sensitive to both P - and S -wave velocities directly, and obtains helpful constraints in model parameters in the vicinity of the Moho. The resulting range of crustal thicknesses beneath Africa (21–46 km) indicates that the crust is thicker in south Africa, thinner in east Africa and intermediate in north and west Africa. Crustal P - (4.7–8 km s−1) and S -wave velocities (2.5–4.7  km s−1) obtained in this study show that in some parts of the models, these are slower in east Africa and faster in north, west and south Africa. Anomalous crustal low-velocity zones are also observed in the models for seismic stations in the cratonic regions of north, west and south Africa. Overall, the results of our study are consistent with earlier models and regional tectonics of Africa.  相似文献   

18.
Recent high-resolution observations of crustal movements have revealed silent slip events (SSEs) with propagation velocities of around 10–15 km d−1 and with intervals of 3–14 months along the deeper parts of the Cascadia and Nankai subduction zones. This study develops 2-D and 3-D models of these short-interval SSEs considering the frictional behaviour that was confirmed experimentally by Shimamoto for the unstable–stable transition regime. To represent this frictional behaviour, a small cut-off velocity to an evolution effect is introduced in a rate- and state-dependent friction law. When the cut-off velocity to the evolution effect is significantly smaller than that to a direct effect, steady-state friction exhibits velocity weakening at low slip velocities and velocity strengthening at high slip velocities. At the deeper Cascadia and Nankai subduction interfaces, the pore pressure is inferred to be high because of the dehydration of materials in the descending plate. Under conditions where the pore-fluid pressure is nearly equal to the lithostatic pressure and the critical weakening displacement is very small, short-interval SSEs with propagation velocities and slip velocities of 4–8 km d−1 and  2 − 4 × 10−7  m s−1, respectively, can be reproduced. The propagation velocity of short-interval SSEs is in proportion to the slip velocity. The results also show that during the nucleation process of large earthquakes, the occurrence of short-interval SSEs becomes irregular because of the accelerated slips that occur at the bottom of the seismogenic zone. Our results suggest that monitoring of short-interval SSEs might be useful for forecasting the main earthquakes.  相似文献   

19.
We combine Global Positioning System (GPS) measurements with forward modelling of viscoelastic relaxation and after-slip to study the post-seismic deformation of the 1997 Umbria-Marche (Central Apennines) moderate shallow earthquake sequence. Campaign GPS measurements spanning the time period 1999–2003 are depicting a clear post-seismic deformation signal. Our results favour a normal faulting rupture model where most of the slip is located in the lower part of the seismogenic upper crust, consistent with the rupture models obtained from the inversion of strong motion data. The preferred rheological model, obtained from viscoelastic relaxation modelling, consists of an elastic upper crust, underlain by a transition zone with a viscosity of 1018 Pa s, while the rheology of deeper layers is not relevant for the observed time-span. Shallow fault creep and after-slip at the base of the seismogenic upper crust are the first order processes behind the observed post-seismic deformation. The deep after-slip, below the fault zone at about 8 km depth, acting as a basal shear through localized time-dependent deformation, identifies a rheological discontinuity decoupling the seismogenic upper crust from the low-viscosity transition zone.  相似文献   

20.
The Centralian Superbasin in central Australia is one of the most extensive intracratonic basins known from a stable continental setting, but the factors controlling its formation and subsequent structural dismemberment continue to be debated. Argon thermochronology of K-feldspar, sensitive to a broad range of temperatures (∼150 to 350 °C), provides evidence for the former extent and thickness of the superbasin and points toward thickening of the superbasin succession over the now exhumed Arunta Region basement. These data suggest that before Palaeozoic tectonism, there was around 5–6 km of sediment present over what is now the northern margin of the Amadeus Basin, and, if the Centralian superbasin was continuous, between 6 and 8 km over the now exhumed basement. 40Ar/39Ar data from neoformed fine-grained muscovite suggests that Palaeozoic deformation and new mineral growth occurred during the earliest compressional phase of the Alice Springs Orogeny (ASO) (440–375 Ma) and was restricted to shear zones. Significantly, several shear zones active during the late Mesoproterozoic Teapot Orogeny were not reactivated at this time, suggesting that the presence of pre-existing structures was not the only controlling factor in localizing Palaeozoic deformation. A range of Palaeozoic ages of 440–300 Ma from samples within and external to shear zones points to thermal disturbance from at least the early Silurian through until the late Carboniferous and suggests final cooling and exhumation of the terrane in this interval. The absence of evidence for active deformation and/or new mineral growth in the late stages of the ASO (350–300 Ma) is consistent with a change in orogenic dynamics from thick-skinned regionally extensive deformation to a more restricted localized high-geothermal gradient event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号