首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Landfill has been taken to the bottom of the hierarchy of options for waste disposal but has been the most used method for urban solid waste disposal. However, landfill has become more difficult to implement because of its increasing cost, community opposition, and more restrictive regulations regarding the siting and operation of landfills. Land is a finite and scarce resource that needs to be used wisely. Appropriate allocation of landfills involves the selection of areas that are suitable for waste disposal. The present work describes a type of multi-criteria evaluation (MCE) method called weighted linear combination (WLC) in a GIS environment to evaluate the suitability of the study region for landfill. The WLC procedure is characterized by full tradeoff among all factors, average risk and offers much flexibility than the Boolean approaches in the decision making process. The relative importance weights of factors are estimated using the analytical hierarchy process (AHP). In the final aggregated suitability image, zones smaller than 20 hectares are eliminated from the allocation process. Afterwards, the land suitability of a zone is determined by calculating the average of the suitability of the cells belonging to that zone, a process called zonal land suitability. The application of the presented method to the Gorgan city (Iran) indicated that there are 18 zones for landfill with their zonal land suitability varying from 155.426117 to 64.149024. The zones were ranked in descending order by the value of their zonal land suitability. The results showed the use of GIS as a decision support system (DSS) available to policy makers and decision makers in municipal solid waste (MSW) management issues.  相似文献   

2.
The city of Saqqez has a population of 140,000 people, making it one of the largest cities in Iran. Population growth, consumerism, and change in eating habits, such as the increased use of packaged products, is causing the accumulation of waste in this city to increase. In this study, the selection of a waste landfill site for Saqqez focused on 13 layers of geography information that was used by the IDRISI and Arc GIS software. Different models of the analytic multi-criteria decision-making process, such as an analytical hierarchy process (AHP), weighted linear combination (WLC), and Boolean logic, were used to manage layers to establish specific databases for urban waste landfills. Satellite images (Landsat ETM+ and SPOT 5), proposed sites and a land use map of the study area were also used. The results of this study indicated that two methods (AHP and WLC) in the early stages had better decision-making powers for locating landfill sites when compared to Boolean logic. Overlapping and compounding the similarities between these models in Arc GIS software, a 74-ha site was found. This site will be able to accept 130 tons of waste per day for the next 20 years.  相似文献   

3.
This paper presents a GIS-based multi-criteria site selection for municipal solid waste landfilling in Ariana Region, Tunisia. Based on the regional characteristics, literature related to disposal sites and waste management, local expert, data availability and assessments via questionnaires, 15 constraints, and 5 factors were built in the hierarchical structure for landfill suitability by multi-criteria evaluation. The factors are divided into environmental and socio-economic groups. The methodology is used for preliminary assessment of the 20-year most useful lifetime suitable landfilling sites by combining fuzzy set theory, weighted linear combination (WLC) and analytic hierarchy process (AHP) in a GIS environment. The criteria standardization is undertaken by application of different fuzzy membership functions. The fuzzy membership functions shape and their control points are chosen through assessment of expert opinion. The weightings of each selection criterion are assigned depending on the relative importance using the AHP methodology. The WLC approach is applied for alternative landfill sites prioritization. The results of this study showed five potential candidate sites, which are generated when the environmental factors are valued higher than socio-economic factors. These sites are ranked in descending order using the ELECTRE III method. However, the final decision will require further detailed geotechnical and hydrogeological analyses toward the protection of groundwater as well as surface water.  相似文献   

4.
During the last decades, growth of urbanization and industrialization led to an increase in solid waste generation. Landfilling is the most prevalent ultimate disposal method for the municipal solid wastes in developing countries. The rapid municipal solid waste generation in Markazi province (central part of Iran) causes the need for precision in finding a suitable landfill site selection. In the present study, 12 factors (environmental and socioeconomic factors) have been applied to select the landfill site in Markazi province, Iran. The different methods including the analytic network process (ANP) combined with fuzzy linguistic quantifier, ordered weighted average (OWA), and weighted linear combination (WLC) approach in geographic information system was applied to find an appropriate landfill site. The OWA operator function permits the evaluation of the wide spectrum of consequences (with different scenario) obtained from different management strategies. Results revealed that integration of fuzzy logic, ANP, and OWA provides flexible and better ideas compared to the Boolean logic and WLC to select a suitable landfill site.  相似文献   

5.
In this study, a new, GIS-based solid waste site selection tool (DUPIT) is introduced to obtain a systematic and unbiased methodology during the evaluation phases of alternative solid waste disposal areas with regards to vulnerability to groundwater pollution. The proposed tool is an index technique based on the linear combination of five different hydrogeological parameters including Depth to groundwater table, Upper layer lithology, Permeability of the unsaturated zone, Impermeable layer thickness and Topographic slope. Five different categories are developed to classify each alternative based on the suitability of the site for a solid waste disposal area. As a result, each site is ranked according to the contamination risks for groundwater resources. The proposed technique is applied to the District of Torbali near Izmir, Turkey to determine the most appropriate solid waste disposal site location. The Torbali application is implemented by using a GIS database developed for the area. Based on the results of this application, the best alternative solid waste disposal site for Torbali is selected to be located in the northern portions of the city where the groundwater table is deep, the permeability is low and the topographic slope is mild.  相似文献   

6.
Development of a master plan for industrial solid waste management   总被引:1,自引:0,他引:1  
Rapid industrial growth in the province of Khuzestan in the south west of Iran has resulted in disposal of about 1750 tons of solid waste per day. Most of these industrial solid wastes including hazardous wastes are disposed without considering environmental issues. This has contributed considerably to the pollution of the environment. This paper introduces a framework in which to develop a master plan for industrial solid waste management. There are usually different criteria for evaluating the existing solid waste pollution loads and how effective the management schemes are. A multiple criteria decision making technique, namely Analytical Hierarchy Process (AHP), is used for ranking the industrial units based on their share in solid waste related environmental pollution and determining the share of each unit in total solid waste pollution load. In this framework, a comprehensive set of direct, indirect, and supporting projects are proposed for solid waste pollution control. The proposed framework is applied for industrial solid waste management in the province of Khuzestan in Iran and a databank including GIS based maps of the study area is also developed. The results have shown that the industries located near the capital city of the province, Ahwaz, produce more than 32 percent of the total solid waste pollution load of the province. Application of the methodology also has shown that it can be effectively used for development of the master plan and management of industrial solid wastes.  相似文献   

7.
In most large and fast growing urban areas, finding suitable lands for construction of landfill is one of the serious problems in environmental management. Land fill site selection process depends on different factors, regulations and constraints. Ignoring each of these parameters may cause miscalculations and lead to selection of an inappropriate landfill site which could have negative environmental, economical, and ecological impacts. Therefore, this process must be accomplished by taking into account all of the related criterions and variables. In this study, landfill site selection is performed by combining geographic information system (GIS) and analytical hierarchy process (AHP) in Hamedan province, west of Iran. In relation to landfill site selection, ten different criteria including Geology, surface water, aquifer, land use, elevation, slope, and distance to main roads, residential areas, faults and sinkholes were investigated. Using AHP each criterion was weighted, then geographic information system (Arc GIS 9.3 software) was used to manipulate and present spatial data. Finally, suitability map was prepared by overlay analyses and most suitable and suitable areas were identified and checked in field. The results indicate that 60.4 % of the area in the Hamedan province (11,631 km2) is unsuitable, 33 % (6,257.7 km2) moderately suitable and 6.6 % (1,344 km2) most suitable for construction of landfill.  相似文献   

8.
Geo-environmental assessment and geophysical investigations were carried out over the only functional municipal solid waste disposal site of the city of Addis Ababa, Ethiopia, known locally as Koshe. The accumulated wastes from Koshe have impact on the surrounding human and physical environment since the disposal site was not designed. The study deserves emphasis because the city of Addis Ababa currently obtains a considerable portion of its domestic water supply from a well field developed not much farther from and along a groundwater flow direction in relation to the waste disposal site. It was found out that the leachates from the site contain high concentration of biological oxygen demand, chemical oxygen demand, chloride and sulphate besides high concentration of cobalt, nickel and zinc in the surrounding soils. The geophysical results have mapped weak zones and near-vertical discontinuities that could potentially be conduits for the leachate from the wastes into the deep groundwater system. Further, a zone of potential leachate migration from the landfill was identified from the electrical models; the location of this zone is consistent with the predicted direction of groundwater flow across the site. The results further suggested that the open dump site tends to cause increasing amount of pollution on the surrounding soil, surface and ground waters. Furthermore, it was observed that the Koshe waste disposal site has grown beyond its capacity and the poor management of the open dump landfill has reduced the aesthetic value of the surrounding environments. The need to change/relocate the existing waste disposal site to a more suitable and technologically appropriate site is emphasized.  相似文献   

9.
层次分析法在垃圾填埋场适宜性评价中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
郜洪强  樊延恩 《中国地质》2009,36(6):1433-1441
中国生活垃圾填埋场以简易填埋场为主,已对环境造成了一定污染,垃圾填埋场地的适宜性越来越受到重视.本文在对河北省县级以上城镇生活垃圾填埋场调查的基础上,首次采用层次分析法,综合考虑地质环境条件、垃圾填埋场自身条件、环境保护条件、经济条件、场地条件五大因素,对河北省垃圾填埋场的适宜性进行了评价,提出了一套评价标准.通过实例应用表明,该方法选取的评价因素较全面,客观反映了河北平原垃圾填埋场的实际情况,取得了较满意的评价结果.  相似文献   

10.
The disposal is the final step of any hazardous waste management plan. An inappropriate landfill site may have negative environmental, economical, and ecological impacts. Therefore, landfills should be sited carefully by taking into account various rules, regulations, factors, and constraints. In this study, candidate sites for hazardous landfills in the northeastern Khorasan Razavi province are determined using the integration of geographic information system and landfill susceptibility zonation methods. For this, the inappropriate areas were first removed from the model, and the suitability of remaining regions were evaluated using 15 different criteria in two steps. With this done, nine candidate sites were selected as the most suitable locations. Finally, the selected landfill sites were proposed based on environmental impact assessment (Leopold matrix) and economical studies. This study shows that Maasumabad, Kheirabad, Mayamey, and Yonsi are the best locations for the constitution of landfill in Khorasan Razavi province, respectively.  相似文献   

11.
Increase in waste generation calls for an effective waste management as this has become a necessity for environmental sustainability. Several methods are adopted in managing waste, which include waste reduction, reuse, thermal treatment, recycling and landfilling. The landfill method is recognised as the most used of all the waste management methods in developing countries such as Ghana. However, the selection of a suitable landfill site is very difficult and tedious. This is because it involves a consideration of many factors such as environmental, topographic, economic, socio-cultural and civil engineering. This research sought to identify a suitable landfill site by applying GIS multicriteria and weighted overlay approach in the Bongo District of Northern Ghana. The analysis relied on criteria and weights provided by the technocrats and the indigenes in the district as a way of demonstrating how landfill siting impasse can be resolved by incorporating the various stakeholders. The results obtained provided clear areas for landfill sites in the study area from the technocratic and the indigenous perspectives. However, the technocratic perspective failed to include an important cultural criterion, sacred groves, as a factor. The indigenous perspective also compromised on the factor related to nearness to residential areas, and is equally not sufficient on its own. The optimal landfill sites, which meets the expectations of both the technocrats and indigenes, was identified. This perspective has produced technically favourable and socio-culturally acceptable landfill site. However, it is recommended an environmental impact assessment (EIA) be conducted to identify the full environmental and social cost of the site. It is concluded that in landfill site selection much attention be given to cultural factors in the same way as the technical factors.  相似文献   

12.
This study presents a methodology for siting municipal solid waste landfills, coupling geographic information systems (GIS), fuzzy logic, and multicriteria evaluation techniques. Both exclusionary and non-exclusionary criteria are used. Factors, i.e., non-exclusionary criteria, are divided in two distinct groups which do not have the same level of trade off. The first group comprises factors related to the physical environment, which cannot be expressed in terms of monetary cost and, therefore, they do not easily trade off. The second group includes those factors related to human activities, i.e., socioeconomic factors, which can be expressed as financial cost, thus showing a high level of trade off. GIS are used for geographic data acquisition and processing. The analytical hierarchy process (AHP) is the multicriteria evaluation technique used, enhanced with fuzzy factor standardization. Besides assigning weights to factors through the AHP, control over the level of risk and trade off in the siting process is achieved through a second set of weights, i.e., order weights, applied to factors in each factor group, on a pixel-by-pixel basis, thus taking into account the local site characteristics. The method has been applied to Evros prefecture (NE Greece), an area of approximately 4,000 km2. The siting methodology results in two intermediate suitability maps, one related to environmental and the other to socioeconomic criteria. Combination of the two intermediate maps results in the final composite suitability map for landfill siting.  相似文献   

13.
The rapid population growth due to fast urbanization in developing countries leads to environmentally sustainable and efficient management of solid waste. Insufficient solid waste landfill sites, in particular, require new areas because of rapid urbanization. This reveals the need to select appropriate landfill sites, in terms of pollution, that meet the requirements of curbing pollution. In this study, a new solid waste site selection tool was presented for the assessment and selection of areas for a municipal solid waste (MSW) landfill using a combination of point count index and constraint overlaying method with a geographical information system (GIS). For this purpose, factors affecting the site selection tool development were gathered under three groups, namely geological and natural, environmental and social–economical. For the first group, weighting for each criterion—depending upon its relative importance—was assigned, and ratings were given appropriately with their relative magnitude of impact. For the second and third groups, buffer zones were created in order to perform overlay analysis. This tool was used to perform MSW landfill selection of Çorlu District. According to the final map produced with this tool, two areas were identified within the district limits. This procedure was time saving as it was quite easy and did not require too much time and money to collect data. However, besides the usefulness of the procedure, at the final stage of decision-making, some further investigations should also be made.  相似文献   

14.
A geo-environmental evaluation for urban land-use planning often requires a large amount of spatial information. Geographic information systems (GIS) are capable of managing large amounts of spatially related information, providing the ability to integrate multiple layers of information and to derive additional information. A GIS-aid to the geo-environmental evaluation for urban land-use planning is illustrated for the urban area of Lanzhou City and its vicinity in Northwest China. This evaluation incorporates topography, surficial and bedrock geology, groundwater conditions, and historic geologic hazards. Urban land-use is categorized according to the types of land-use and projects planned, such as high-rise building, multi-storey building, low-rise building, waste disposal, and natural conservation. Multi-criteria analysis is performed to evaluate development suitability of the geo-environment for each category, according to appropriately measured and weighted factors. A suitability map for each category is developed using an algorithm that combines factors in weighted linear combinations. It is demonstrated that the GIS methodology has high functionality for geo-environmental assessment.  相似文献   

15.
Landfill site selection by using geographic information systems   总被引:3,自引:3,他引:3  
One of the serious and growing potential problems in most large urban areas is the shortage of land for waste disposal. Although there are some efforts to reduce and recover the waste, disposal in landfills is still the most common method for waste destination. An inappropriate landfill site may have negative environmental, economic and ecological impacts. Therefore, it should be selected carefully by considering both regulations and constraints on other sources. In this study, candidate sites for an appropriate landfill area in the vicinity of Ankara are determined by using the integration of geographic information systems and multicriteria decision analysis (MCDA). For this purpose, 16 input map layers including topography, settlements (urban centers and villages), roads (Highway E90 and village roads), railways, airport, wetlands, infrastructures (pipelines and power lines), slope, geology, land use, floodplains, aquifers and surface water are prepared and two different MCDA methods (simple additive weighting and analytic hierarchy process) are implemented to a geographical information system. Comparison of the maps produced by these two different methods shows that both methods yield conformable results. Field checks also confirm that the candidate sites agree well with the selected criteria.  相似文献   

16.
季泰 《城市地质》2007,2(3):1-5
城市生活固体废弃物已成为重要环境污染问题之一,地质环境工作应为废弃物的填埋选址,防治污染提供服务。北京地质环境部门受北京市主管部门委托开展了全市生活固体废弃物填埋场地适宜性区划,卫生填埋场地环境地质影响评价,其成果已为市规划、环境行政部门所利用。  相似文献   

17.
The current solid waste disposal site in the Mamak district of Ankara is being engulfed by the growing city. All varieties of solid wastes, including medical wastes, are stored at the present site in an irregular manner. Topographical and geological conditions at Mamak waste site are favorable for constructing a sanitary landfill. Located at the edge of a topographical depression, the site is underlain by the natural hydraulic barriers such as clay and metagreywacke. The terrestrial clay has a permeability of 10−7 to 10−8 cm/s and low to moderate values of CEC. The proposed sanitary landfill to replace the present solid waste site has a capacity of storing solid waste over 50 years. The details of base liner, final cover, toe embankment, and drainage of leachate and gas are presented in the paper.  相似文献   

18.
Locating a suitable place to dispose the municipal solid wastes hygienically (sanitary landfill) is one of the fundamental subjects relating the environmental stability of cities and, in general, the human settlements. This final stage of solid waste management requires observance of a series of principles and criteria mainly including environmental, social, economical, and general acceptance criteria. The set of these criteria along with their sub-criteria causes some complexities in decision making for landfill site selection. Considering effective parameters and criteria, we developed an integrated fuzzy logic and analytic network process (i.e. F-ANP) to locate a suitable location for landfilling municipal solid wastes generated in Kahak Town, Qom, Iran. Our findings revealed that integration of fuzzy logic and ANP can give better idea compared with other models like AHP, fuzzy logic, and ANP (individually). Therefore, this model can be applied in site selection for landfill of other similar places.  相似文献   

19.
城市垃圾的地质处置   总被引:8,自引:0,他引:8  
城市固体废物(城市垃圾)是国际上现代化城市环境污染的主要污染源之一,发达国家非常注重固体废物地质处置的研究,这一领域是环境工程与水资源工作者研究的热点问题。我国城市垃圾对环境的污染非常严重,目前有三分之二的城市已形成“垃圾包围城市”的严重局面。随着经济的发展,我国城市固体废物的数量增长很快。如何处理庞大的城市垃圾将是关系到经济发展、水资源和环境保护的重大问题。本文介绍了我国城市垃圾的现状和目前国际  相似文献   

20.
城市垃圾性质及其填埋场的工程地质评价   总被引:10,自引:0,他引:10  
卫生填埋是现阶段处理城市垃圾的主要方法,正确评价,选择填埋垃圾的工程性质对填埋场的设计极为重要;填埋场是一个综合性污染源,若处理不当,会产生严重的环境工程地质问题,做好填埋场的工程地质研究,对于水资源及环境保护具有重要意义,本文对城市垃圾的工程性质进行了分析,评价,从环境工程地质学的角度对合肥市清溪路垃圾埋场的地基勘察,主要工程地质问题及应采取的工程措施进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号