首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
针对缺乏地形条件和工程处置措施对堰塞坝溃决过程影响研究的现状,采用4种河床坡度(0°、1°、2°、3°)和3种泄流槽横断面型式(三角形、梯形、复合型),开展了堰塞坝溃决的模型试验。通过分析堰塞坝的溃决流量、溃决历时、溃口发展和坝体纵截面演变过程,研究了不同河床坡度和泄流槽横断面对堰塞坝溃决过程的影响规律。试验结果表明:(1)堰塞坝溃决过程可分为3个阶段。阶段Ⅰ:溃口形成阶段,溃决流量较小;阶段Ⅱ:溃口发展阶段,水流下蚀及侧蚀强烈,溃决流量到达峰值;阶段Ⅲ:衰减-平衡阶段,粗化层形成,溃口停止发展。(2)河床坡度增加意味着下游坝坡、坝顶及泄流槽的坡度增加,导致水流侵蚀能力增强,溃口下切迅猛,因此在0°~3°范围内河床坡度越大,峰值流量越大,峰现时间越早,溃决流量过程曲线越趋于“高瘦型”,且残留坝高越小。(3)泄流槽横断面型式不同导致其槽深、槽宽和侧坡坡度不同,进而影响溃口发展和溃决流量。三角形槽的水土作用面积小,溃口下切及展宽速率最高,峰值流量最大,峰现时间最早;梯形槽的槽底高程最高,水土作用面积最大,溃口下切速率最低,峰现时间最晚;而复合槽介于前两者之间。试验成果将为堰塞坝应急抢险和工...  相似文献   

2.
Experimental study on cascading landslide dam failures by upstream flows   总被引:1,自引:1,他引:0  
Landslide dams in mountainous areas are quite common. Typically, intense rainfalls can induce upstream flows along the sloping channel, which greatly affects the stability and failure modes of landslide dams. If a series of landslide dams are sequentially collapsed by an incoming mountain torrent (induced by intense rainfall), large debris flows can be formed in a short period of time. This also amplifies the magnitude of the debris flows along the flow direction. The catastrophic debris flows, which occurred in Zhouqu, China on August 8, 2010, were indeed caused by intense rainfall and the upstream cascading failure of landslide dams along the gullies. Experimental tests were conducted in a sloping channel to understand the dynamic process of cascading landslide dam failures and their effect on flow scale amplification. Similar to the Zhouqu conditions, the modeled landslide dams were distributed along a sloping channel and breached by different upstream flows. For each experiment, the front flows were sampled, the entrained grain sizes were analyzed, and the front discharge along the channel was measured. The results of these experiments show that landslide dams occurring along the channel can be destroyed by both high and low discharge flows, although the mechanisms are quite different for the two flow types. Regardless of flow type, the magnitude of the flows significantly increases after a cascading failure of landslide dams, resulting in an increase in both the diameter and the entrained coarse particles percentage.  相似文献   

3.
刘宁 《水科学进展》2010,21(4):541-549
堰塞湖是由于山体滑坡、崩塌、泥石流等堵塞河道形成的没有经过专门设计、没有专门的泄水设施的湖泊,一旦溃决,容易给下游造成巨大的灾难。分析了堰塞湖的成因、溃决机理与风险判断,提出堰塞湖应急处置的原则、理念、阶段与处置方法,总结了堰塞湖应急处置中的一些经验和认识。以四川省汶川特大地震形成的堰塞湖应急处置为例,从可能溃决方式、溃坝洪水、应急除险总体方案、开渠引流方案和除险效果等方面,介绍了唐家山堰塞湖的应急处置实践,并简要介绍了其它一些堰塞湖应急处置。  相似文献   

4.
Shortly before midnight on Wednesday, July 27, 2011, the landslide dam forming a lake on the Matthieu River, Dominica, West Indies rapidly breached. The complete draining of the lake caused major flooding along the lower Layou River Valley. No fatalities or injuries resulted despite significant property and infrastructure damage. Government estimates place the cost for immediate cleanup and long-term repairs between ECD$9 million and ECD$18 million. The lake created by the landslide dam was unusual for having persisted nearly 14 ?years. Formation of the Matthieu landslide dam was associated with formation and breaching of two smaller landslide dams on the Layou River in 1997. Available evidence is consistent with breaching due to landsliding on the face of the landslide dam. Landslides removed sufficient material to permit the lake to flow over the dam and erode the dam to about the level of the pre-existing channel of the Matthieu River.  相似文献   

5.
Stability of landslide dams and development of knickpoints   总被引:2,自引:0,他引:2  
The Wenchuan earthquake triggered many landslides and numerous avalanches and created 100 odd quake lakes. The quake lakes may be removed or preserved. The removal strategy was applied to several large landslide dams, which were dangerous because massive amounts of water pooled up in the quake lakes. The dams could eventually fail under the action of dam outburst flooding, potentially endangering the lives of people in the downstream reaches. This paper studied the stability of landslide dams and the development of knickpoints by field investigations and experiments, and analyzing satellite images. The study concluded that if landslide dams were preserved, they would develop into knickpoints and act as a primary control of riverbed incision and, thus, reduce the potential of new landslide. The stability of landslide dams depends mainly on the development of the step-pool system and stream power of the flood flow. If a landslide dam consists of many boulders, a step-pool system may develop on the spillway channel of the dam, which would maximize the resistance, consume most of the flow energy and consequently protect the dam from incision. The development degree of the step-pool system is represented by a parameter S p, which was measured with a specially designed instrument. A preservation ratio of landslide dams is defined as the ratio of preserved height after flood scouring to the original height of the dam. For streams with peak flood discharge lower than 30 m3/s, the preservation ratio is linearly proportional to S p. For rivers with a peak flood discharge higher than 30 m3/s (30–30,000 m3/s), the minimum S p value for stable channel increases with log p, in which p is the unit stream power. For a landslide dam with a poorly developed step-pool system, S p is smaller than the minimum value and the outburst flood incises the spillway channel and causes failure of the dam. For preserved landslide dams, sediment deposits in the quake lakes. A landslide dam may develop into a knickpoint if it is stabilized by long-term action of the flow. Large knickpoints can totally change the fluvial processes and river morphology. Uplift of the Qinghai–Tibetan Plateau has caused extensive channel bed incision along almost all rivers. For many rivers, the incision has been partly controlled by knickpoints. Upstream reaches of a knickpoint have a new and unchanging base level. This brings about a transition from degradation to aggradation and from vertical bed evolution to horizontal fluvial process. Multiple and unstable channels are prominent in the reaches, upstream of the knickpoints. If hundreds of landslide dams occurred simultaneously on a reach of a mountain river, the potential energy of bank failure and the slope erosion would be greatly reduced and sediment yield from the watershed may be reduced to nearly zero. The quake lakes may be preserved long term and become beautiful landscapes. Streams with long-term unfilled quake lakes have good aquatic ecology.  相似文献   

6.
堰塞坝是由于崩塌、滑坡、泥石流等形成的天然坝体,不同于人工土石坝,堰塞坝坝体结构松散,颗粒级配不均匀,在较高水头作用下坝体可能发生渗透破坏而导致溃坝,严重威胁下游人民群众的生命及财产安全。由于堰塞坝存在较大粒径颗粒,常规的渗透试验装置难以满足要求,本文研制了直径为60cm的大直径渗透试验仪,进行了不同堰塞坝级配材料的渗透破坏试验,并探讨了堰塞坝体材料渗透特性的主要影响因素。研究发现:(1)堰塞坝材料的渗透破坏形式取决于材料级配,粗颗粒含量较多时为管涌破坏,细颗粒含量较多或粒径缺失时为流土破坏;(2)堰塞坝渗透系数随干密度的增大而减小,主要取决于细料填充粗料孔隙的程度,单独使用不均匀系数或曲率系数不适用于评价渗透系数的变化;(3)基于试验数据提出了用于堰塞坝渗流破坏形式的判别公式,并推导出堰塞坝管涌破坏的临界水力坡降计算公式。  相似文献   

7.
An Ms 6.5 earthquake shocked the Ludian County, Yunnan Province, China, on 3 August 2014 and triggered the Hongshiyan landslide dam. The dam, with a height of 83 m and a lake capacity of 260?×?106 m3, threatened more than 10,000 people. A unique feature of this landslide dam was that it formed between a man-made dam and a hydropower plant. An existing drainage tunnel connecting the lake and the hydropower plant became a natural drainage conduit for the landslide dam, which played an important role in the mitigation of the landslide dam risks. This paper reports a quantitative risk assessment for the Hongshiyan landslide dam considering both engineering and non-engineering risk mitigation measures. The risk assessment is divided into three stages according to the implementation of two engineering measures: construction of a diversion channel and excavation of a branch drainage tunnel. The dam breaching hydrographs, flood zones, population at risk, and likely fatalities in each of the three stages are analysed. The optimum evacuation strategy in each stage is also studied based on the principle of minimum total consequence. It is found that the diversion channel decreases the dam breaching peak discharge and the associated risks significantly. The branch drainage tunnel prevent the landslide dam from overtopping failure in non-flooded period; however, the landslide dam may fail by overtopping in a future flood if the inflow rate is larger than the outflow rate through the drainage tunnels, resulting in serious losses of lives and properties. The dam breaching risks in all the three stages could be largely reduced by the optimal evacuation decision, which shows that timely evacuation is vital to save life and properties. The study provides a scientific basis for decision making in landslide dam risk management.  相似文献   

8.
Landslides may obstruct river flow and result in landslide dams; they occur in many regions of the world. The formation and disappearance of natural lakes involve a complex earth–surface process. According to the lessons learned from many historical cases, landslide dams usually break down rapidly soon after the formation of the lake. Regarding hazard mitigation, prompt evaluation of the stability of the landslide dam is crucial. Based on a Japanese dataset, this study utilized the logistic regression method and the jack-knife technique to identify the important geomorphic variables, including peak flow (or catchment area), dam height, width and length in sequence, affecting the stability of landslide dams. The resulting high overall prediction power demonstrates the robustness of the proposed logistic regression models. Accordingly, the failure probability of a landslide dam can also be evaluated based on this approach. Ten landslide dams (formed after the 1999 Chi-Chi Earthquake, the 2008 Wenchuan Earthquake and 2009 Typhoon Morakot) with complete dam geometry records were adopted as examples of evaluating the failure probability. The stable Tsao-Ling landslide dam, which was induced by the Chi-Chi earthquake, has a failure probability of 27.68% using a model incorporating the catchment area and dam geometry. On the contrary, the Tangjiashan landslide dam, which was artificially breached soon after its formation during the Wenchuan earthquake, has a failure probability as high as 99.54%. Typhoon Morakot induced the Siaolin landslide dam, which was breached within one hour after its formation and has a failure probability of 71.09%. Notably, the failure probability of the earthquake induced cases is reduced if the catchment area in the prediction model is replaced by the peak flow of the dammed stream for these cases. In contrast, the predicted failure probability of the heavy rainfall-induced case increases if the high flow rate of the dammed stream is incorporated into the prediction model. Consequently, it is suggested that the prediction model using the peak flow as causative factor should be used to evaluate the stability of a landslide dam if the peak flow is available. Together with an estimation of the impact of an outburst flood from a landslide-dammed lake, the failure probability of the landslide dam predicted by the proposed logistic regression model could be useful for evaluating the related risk.  相似文献   

9.
堰塞坝溃坝模型实验研究综述   总被引:1,自引:0,他引:1  
堰塞坝是天然形成的坝体,结构比较松散、稳定性差、渗透作用强,发生溃决危险性大、概率高、突发性强,而且破坏可能性高及产生的洪水威胁人们的生命和财产安全,因此需要系统、全面的研究。作者从单坝溃坝、级联溃坝及堰塞坝处置的溃坝试验进行详细的回顾,总结及分析了国内外学者在堰塞坝溃坝模型实验取得的成果及局限性,进一步分析了单坝溃决的颗粒级配、密实度、含水率、沟床坡度等因素,最后讨论了溃坝因素与溃决模式、溃决特征、溃决流量、溃口演化的关系。基于模型实验相似理论及模型比尺、实验测试手段、堰塞坝处置三个方面,提出了今后的研究重点。  相似文献   

10.
中国喜马拉雅山地区滑坡堵江编目及空间特征分析   总被引:1,自引:0,他引:1  
滑坡堵江数据获取与编目是其区域研究开展的基础。喜马拉雅山脉地处中国西南边陲,新构造运动强烈,滑坡堵江事件频发,在产生巨大经济损失的同时也造成了不良国际影响。鉴于该区区域滑坡堵江现场调查难以开展的问题,本文利用遥感技术、地理信息技术,结合野外验证获取了区内136处滑坡堵江事件的空间位置、基本属性和几何形态,建立了中国喜马拉雅山地区滑坡堵江编目。区内滑坡堵江集中分布在米林、札达、加查、错那、隆子、郎县等县,成因类型以滑坡、崩塌、泥石流为主。基于环境要素信息量计算得出该区滑坡堵江的易发程度随高程、坡度、地震加速度的增大先增大后减小,随地震点密度增大先减小后增大,随构造线密度增大逐渐增大,随与水系距离增大逐渐减小。不同坡向中,西向斜坡更容易诱发滑坡堵江,东南坡向最不容易诱发滑坡堵江。高位高山地貌类型、地层条件中的朗县构造混杂岩组和坚硬岩组,构造分区中的高喜马拉雅分区和雅鲁藏布江分区是滑坡堵江形成的有利条件。对比各环境要素不同类别的信息量取值认为影响该区滑坡堵江事件形成的主要背景因素是高程、地貌类型、地层岩组、构造分区和地震点密度。这些滑坡堵江事件几何参数的研究结果表明坝体长度-坝体面积与滑坡面积-坝体面积之间具有拟合程度较高的乘幂函数关系,而其他参数间的相关性并不突出。  相似文献   

11.
Landslide dam failure can trigger catastrophic flooding in the downstream. However, field observation of such flooding is rarely available, while laboratory experimental studies are sparse. The mechanism of landslide dam failure and the flood has so far remained insufficiently understood. Here, we present an experimental investigation of landslide dam failure and the flood. A total of 28 runs of experiments are carried out in a flume of 80 m × 1.2 m × 0.8 m, with differing inflow discharge, dam composition, dam geometry, and initial breach dimension. An array of twelve automatic water-level probes is deployed to measure the stage hydrographs along the flume, and the video recording of the dam failure processes facilitates an estimation of the widening of initial breach. Under the present experimental conditions with dams composed of homogeneous materials, landslide dam failure is primarily caused by erosion of overtopping flow, and lateral mass collapse is also considerable during the cause of breach widening. Cohesive clay may act to mitigate the seepage through the dam and thus its subsidence and appreciably modulate the dam failure process and the flood. However, the impacts of clay may be readily overwhelmed by a large inflow discharge and initial breach. Gravels in the dam may appreciably depress the rate of the dam failure process and thus modify the flood. The present work provides new experimental data set for testing mathematical models of the flood flow due to landslide dam failure.  相似文献   

12.
横断山脉北麓金沙江上游河段沟壑纵横,水能资源丰富。中、晚更新世以来,快速隆升的新构造活动导致该河段复杂结构岩体在重力场的持续作用下灾变频繁。笔者阐述了该河段高地应力的基础地质背景与金沙江板块构造结合带蛇绿岩套的复杂结构岩体基本特征,提出了快速隆升河段的基本认知,建议将≥5 mm/a作为快速隆升河段的界限值;列举了21.4 km河段内不同时期、不同类型4处大规模堵江事件的证据和基本特征,阐述了其与快速隆升之间的关系;运用地质过程机制法分析了4个堵江体的致灾机理,指出早期堵江残体为未来人类工程活动的潜灾体。  相似文献   

13.
Shan  Yibo  Chen  Shengshui  Zhong  Qiming  Mei  Shengyao  Yang  Meng 《Landslides》2022,19(6):1491-1518

The existing empirical models do not consider the influence of material composition of landslide deposits on the peak breach flow due to the uncertainty in the material composition and the randomness of its distribution. In this study, based on the statistical analyses and case comparison, the factors influencing the peak breach flow were comprehensively investigated. The highlight is the material composition-based classification of landslide deposits of 86 landslide cases with detailed grain-size distribution information. In order to consider the geometric morphology of landslide dams and the potential energy of dammed lakes, as well as the material composition of landslide deposits in an empirical model, a multiple regression method was applied on a database, which comprises of 44 documented landslide dam breach cases. A new empirical model for predicting the peak breach flow of landslide dams was developed. Furthermore, for the same 44 documented landslide dam failures, the predicted peak breach flow obtained by using the existing empirical models for embankment and landslide dams and that obtained by using the newly developed model were compared. The comparison of the root mean square error (Erms) and the multiple coefficient of determination (R2) for each empirical model verifies the accuracy and rationality of the new empirical model. Furthermore, for fair validation, several landslide dam breach cases that occurred in recent years in China and have reliable measured data were also used in another comparison. The results show that the new empirical model can reasonably predict the peak breach flow, and exhibits the best performance among all the existing empirical models for embankment and landslide dam breaching.

  相似文献   

14.
山区特大地震往往导致大量堰塞湖,例如2008年汶川地震形成了至少257个堰塞湖,并且主震后发生了大量余震,这些余震可能会影响堰塞坝体的安全状态。通过大型振动台模型试验,研究了余震及库水耦合作用下堰塞坝体的破坏及溃决机理和过程。共进行了两组不同材料的振动台模型试验,分别模拟含黏粒较多且颗粒较小(坝体Ⅰ)和基本不含黏粒且颗粒较大(坝体Ⅱ)的两种坝体。在不同水位条件下进行振动台试验。研究成果表明:(1)地震和库水耦合作用下堰塞坝体的主要溃决方式是漫顶溢流,主要溃决过程为地震力使松散的堰塞坝体发生沉陷,库水渗入使沉陷加剧,最终水位上升漫过坝顶发生溢流冲蚀破坏。(2)地震一般不会直接引起堰塞坝体的破坏。地震力对坝体稳定性的主要影响是使坝体发生沉陷变形。在地震和库水耦合作用下,坝体沉陷比单一因素作用下更为剧烈,因此地震作用会使漫顶溢流提前发生。(3)地震和库水耦合作用下坝体Ⅰ沉陷量大于坝体Ⅱ,说明现实中由大粒径岩土体组成的堰塞坝体具有更好的稳定性。  相似文献   

15.
The Attabad landslide dam caused significant property losses and many human casualties in Pakistan, and also greatly affected the operation of the China-Pakistan Karakoram Highway (KKH). This paper discusses the risk of dam breach and hazards to the KKH project construction site following a dam breach. The paper examines the following three topics. (1) The geomorphologic dimensionless blockage index (DBI) and the analogy method were used to analyze the stability of the Attabad landslide dam. The long-term behaviors of landslide dams downstream of the Attabad landslide dam indicate that the risk of a dam breach exists, but the probability of a total dam failure is low. (2) The peak discharge of a potential breach of the Attabad landslide dam was calculated for scenarios in which 1/4, 1/3, 1/2, and total failure of the dam was breached. The potential breach discharge decreases with the downstream distance. (3) The potential impacts of the landslide dam breach on the KKH project construction site were analyzed. Based on the composition of the landslide dam, the probability of a 1/3 dam breach is high. To ensure the safety of downstream areas, disaster preparedness plans that correspond to the 1/2 dam breach scenario should be developed. Based on experience in addressing the landslide dam that was caused by the Wenchuan Earthquake, artificial controlled drainage measures are suggested and provide a technical reference for addressing the Attabad landslide dam and achieving recovery and normal operation of KKH.  相似文献   

16.
通过模型实验,探讨了松散土坡3种不同结构特征条件下(均匀坡体(坡体物料均匀混合)、平行坡体(土层成层且层面与滑面平行)和斜交坡体(土层成层且层面与滑面斜交))形成滑坡堰塞体的动力过程和堆积特征,通过分区域取样及三维扫描技术研究了堰塞体的物质分布规律与形态特征。研究结果表明:堰塞体堆积特征与坡体特征存在紧密联系,堰塞体纵向(沿主沟道方向)和横向(沿滑坡运动方向)上的物质分布与坡体纵向和横向的物质分布特征基本对应;在垂向(表层到底部)上,由于不同坡体条件下滑坡的动力过程和机理不同,从而导致堰塞体堆积特征存在一定区别。均匀坡体和平行坡体呈整体启动模式,运动过程中物料间存在垂向渗透和交换作用,导致堰塞体物质在垂向上呈明显的上粗下细反粒序分布特征,堰塞体横剖面多呈平坦型和倾斜型。斜交坡体呈分层启动模式,运动堆积过程中保持原有层序,粗、细颗粒先后启动条件下颗粒间存在推挤、爬升和水平渗透作用,使得堰塞体更加密实且垂向上也呈现反粒序分布特征,横剖面多呈起伏型。本研究为滑坡堰塞体稳定性快速评估和复原滑坡初始状态提供依据。  相似文献   

17.
The Wenchuan earthquake, measured at M s 8.0 according to the China Earthquake Administration, occurred at 14:28 on 12 May 2008 in the Sichuan Province of China. It brought overwhelming destruction to eight provinces and cities. Landslides and rock avalanches triggered by the earthquake produced 257 landslide lakes which were distributed along the fault rupture zone and river channels. The authors traveled to the disaster zone immediately after the earthquake to examine some of the features of the debris dams and performed a quick evaluation of the potential for outburst of earthquake-induced landslide lakes for the purpose of disaster relief. The preliminary analysis indicated that the landslide lakes could be classified as those exhibiting extremely high risk, medium risk, and low risk according to field observations and remote sensing, to determine material composition, dam structure, dam height, maximum water storage capacity, and size of the population potentially affected area. The failure risk of 21 debris dams were evaluated as follows: one dam with an extremely high danger risk, seven dams with a high danger, five dams with a medium danger, and eight dams of low danger. More concern was given to the Tangjiashan Lake and different scenarios for the potential sudden failure of its dam were assessed. The risk evaluation result was accepted in full, by the earthquake disaster relief office. A successful emergency dam treatment for risk reduction was planned, based on our assessments, and these measures were quickly carried out. According to this research, the earthquake destabilized the surrounding mountains, resulting in a prolonged geohazard for the area. Landslides and debris flows will continue to develop for at least 5 to 10 years after the Wenchuan earthquake and will produce additional dammed lakes. Recommendations and plans for earthquake–landslide lake mitigation were proposed, based on past successful practices.  相似文献   

18.
滑坡堰塞坝是大型滑坡堆积体堵塞河道形成的土石坝。正、反粒序结构作为大型远程滑坡所特有的2种具有显著差异的地质结构特征,2种情况下坝体的破坏模式差异及稳定性影响因素亟需试验研究。文章通过室内水槽物理模型实验,对比不同粒径、不同结构的滑坡堰塞坝坝体的破坏过程差异,探究了正、反粒序结构条件下堰塞坝的稳定性差异、破坏模式及影响因素。研究结果表明:(1)堰塞坝破坏模式的变化取决于浸润线在下游坡面的出露位置,相比上游水位有一定的延迟性;(2)正、反粒序堰塞坝的破坏模式取决于坡体渗流与下游坡面临界起动坡降的关系;(3)细砂层的位置分布,不同埋深细砂层的起动临界坡降差异和细砂与中粗砂的孔隙率差异是造成正、反粒序坝体破坏差异的主要原因。该研究成果可为大型滑坡堰塞坝的防灾减灾提供理论指导。  相似文献   

19.
针对叶城柯克亚乡波龙7.20突发泥石流灾害,现场开展了应急科学调查。对沟下游泥石流堆积区进行量测,对上游突发小型滑坡-堰塞湖-泄流全过程开展实时观察。结果发现:泥石流固体物质主要是晚更新世风积土滑坡和中元古变质岩及碳酸盐岩崩塌,水体来源主要是强降雨导致的上游洪水及堰塞湖溃决;沟谷上游以稀性泥石流为主,下游加入了崩塌块体及河道砂砾石,粘度有所增大;堆积区呈块石散落和淤积状态。据现场多个老堰塞坝推测,波龙沟泥石流发生周期约15~20年。现有停车场位于沟口堆积区,需加大极端洪水及泥石流排泄空间,拓宽排导沟槽净空。  相似文献   

20.
Large-scale landslide dams can induce significant hazards to human lives by blocking the river flows and causing inundation upstream. They may trigger severe outburst flooding that may devastate downstream areas once failed. Thus, the advancement in understanding the formation of landslide dams is highly necessary. This paper presents 3D numerical investigations of the formation of landslide dams in open fluid channels via the discrete element method (DEM) coupled with computational fluid dynamics (CFD). By employing this model, the influence of flow velocity on granular depositional morphology has been clarified. As the grains settle downwards in the fluid channel, positive excess water pressures are generated at the bottom region, reducing the total forces acting on the granular mass. In the meantime, the particle sedimentations into the fluid channel with high impacting velocities can generate fluid streams to flow backwards and forwards. The coupled hydraulic effects of excess water pressure and fluid flow would entrain the solid grains to move long distances along the channel. For simulations using different flow velocities, the larger the flow velocity is, the further distance the grains can be transported to. In this process, the solid grains move as a series of surges, with decreasing deposit lengths for the successive surges. The granular flux into the fluid channel has very little influence on the depositional pattern of particles, while it affects the particle–fluid interactions significantly. The results obtained from the DEM-CFD coupled simulations can reasonably explain the mechanisms of granular transportation and deposition in the formation of landslide dams in narrow rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号