首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determination of the return period of design flood depends on the nature of the project and the consequences of the flood and is based on economic criteria, human casualties, and hydrological factors. Underestimation of flood might result in casualties and economic damages, while the overestimation leads to capital waste. Therefore, in this research, the flood frequency analysis of Dez Basin, Iran was conducted within the period of 1956–2012 using power law approach together with ordinary distributions, including normal, log normal, Pearson type III, exponential, gamma, generalized extreme value, Nakagami, Rayleigh, logistic, generalized logistic, generalized Pareto, and Weibull distributions. The power law comes from the fractal nature of earth science phenomena such as precipitation and runoff. Accordingly, in this research the partial duration flood series of five hydrometric stations in Dez Basin were extracted using power law with the intervals of 7, 14, 30, and 60 days and then compared with the annual maxima. The results indicated that the annual maxima were not suitable for frequency analysis of the flood in Dez Basin, and the 30-day partial duration series obtained from the power law has a better correspondence with the flow and properties of the Dez Basin. The independence and stationarity of the 30-day partial duration series were examined by Wald–Wolfowitz test, confirming the independence of the considered series. Next, the power distribution and the typical statistical distributions were fitted onto the data of the flood in Dez Basin, with the performance of each distribution being investigated using normalized root-mean-square error and Nash–Sutcliffe criteria. The results revealed that in the SDZ and TPB stations, power distribution had a better performance than other considered distributions. Moreover, in the SDS, TPS, and TZ stations the power distribution stood in the second rank in terms of the best distribution. As the performance of power distribution in the estimation of the flood in Dez Basin has been very satisfactory and calculation of its parameters and its application is easier than ordinary probability distributions, thus it can be suggested as the superior distribution for flood frequency analysis in Dez Basin.  相似文献   

2.
Investigation on drought characteristics such as severity, duration, and frequency is crucial for water resources planning and management in a river basin. While the methodology for multivariate drought frequency analysis is well established by applying the copulas, the estimation on the associated parameters by various parameter estimation methods and the effects on the obtained results have not yet been investigated. This research aims at conducting a comparative analysis between the maximum likelihood parametric and non-parametric method of the Kendall \(\tau \) estimation method for copulas parameter estimation. The methods were employed to study joint severity–duration probability and recurrence intervals in Karkheh River basin (southwest Iran) which is facing severe water-deficit problems. Daily streamflow data at three hydrological gauging stations (Tang Sazbon, Huleilan and Polchehr) near the Karkheh dam were used to draw flow duration curves (FDC) of these three stations. The \(Q_{75}\) index extracted from the FDC were set as threshold level to abstract drought characteristics such as drought duration and severity on the basis of the run theory. Drought duration and severity were separately modeled using the univariate probabilistic distributions and gamma–GEV, LN2–exponential, and LN2–gamma were selected as the best paired drought severity–duration inputs for copulas according to the Akaike Information Criteria (AIC), Kolmogorov–Smirnov and chi-square tests. Archimedean Clayton, Frank, and extreme value Gumbel copulas were employed to construct joint cumulative distribution functions (JCDF) of droughts for each station. Frank copula at Tang Sazbon and Gumbel at Huleilan and Polchehr stations were identified as the best copulas based on the performance evaluation criteria including AIC, BIC, log-likelihood and root mean square error (RMSE) values. Based on the RMSE values, nonparametric Kendall-\(\tau \) is preferred to the parametric maximum likelihood estimation method. The results showed greater drought return periods by the parametric ML method in comparison to the nonparametric Kendall \(\tau \) estimation method. The results also showed that stations located in tributaries (Huleilan and Polchehr) have close return periods, while the station along the main river (Tang Sazbon) has the smaller return periods for the drought events with identical drought duration and severity.  相似文献   

3.
Surface processes involve complex feedback effects between tectonic and climatic influences in the high mountains of Pamir. The ongoing India–Asia collision provokes the development of east–west-trending mountain ranges that impose structural control on flow directions of the Pamir rivers. The evolving relief is further controlled by strong moisture gradients. The decreasing precipitations from the southern and western margins of the Pamir Plateau to its center, in their turn, control the emplacement of glaciers. Chronologies of glacial records from the Pamir Plateau attest for strong climatic variability during the Quaternary. Corresponding remnants of glacial advances suggest glacial morphodynamic restricted to >4,000 m a.s.l. since marine isotope stage 4. The Panj, the trunk river of Pamir, deflects from the predominant westward drainage, connecting its main tributaries at the western margin of the drainage basin. The geometry of the river network and the pattern of incision characterize the Panj as a composite river. River reaches of indicated low incision coincide with west-trending valleys, parallel to domes and their bounding faults. Valley shape ratios reflect increased incision in north-trending sections, but do not match with changes in the catchment geometry or erodibility of rock types. Modelled riverbed profiles distinguish three Panj reaches. The upstream increase in convexity suggests successive river captures in response to local base-level changes. The northward-deflected river reaches link the local base levels, which coincide with the southern boundaries of the Shakhdara and Yazgulom Dome and Darvaz Range. We argue that tectonics plays a large role controlling the drainage system of the Panj and hence surface processes in the Pamir mountains.  相似文献   

4.
The effects of rainfall and the El Niño Southern Oscillation (ENSO) on groundwater in a semi-arid basin of India were analyzed using Archimedean copulas considering 17 years of data for monsoon rainfall, post-monsoon groundwater level (PMGL) and ENSO Index. The evaluated dependence among these hydro-climatic variables revealed that PMGL-Rainfall and PMGL-ENSO Index pairs have significant dependence. Hence, these pairs were used for modeling dependence by employing four types of Archimedean copulas: Ali-Mikhail-Haq, Clayton, Gumbel-Hougaard, and Frank. For the copula modeling, the results of probability distributions fitting to these hydro-climatic variables indicated that the PMGL and rainfall time series are best represented by Weibull and lognormal distributions, respectively, while the non-parametric kernel-based normal distribution is the most suitable for the ENSO Index. Further, the PMGL-Rainfall pair is best modeled by the Clayton copula, and the PMGL-ENSO Index pair is best modeled by the Frank copula. The Clayton copula-based conditional probability of PMGL being less than or equal to its average value at a given mean rainfall is above 70% for 33% of the study area. In contrast, the spatial variation of the Frank copula-based probability of PMGL being less than or equal to its average value is 35–40% in 23% of the study area during El Niño phase, while it is below 15% in 35% of the area during the La Niña phase. This copula-based methodology can be applied under data-scarce conditions for exploring the impacts of rainfall and ENSO on groundwater at basin scales.  相似文献   

5.
This paper introduces four kinds of novel bivariate maximum entropy distributions based on bivariate normal copula, Gumbel–Hougaard copula, Clayton copula and Frank copula. These joint distributions consist of two marginal univariate maximum entropy distributions. Four types of Poisson bivariate compound maximum entropy distributions are developed, based on the occurrence frequency of typhoons, on these novel bivariate maximum entropy distributions and on bivariate compound extreme value theory. Groups of disaster-induced typhoon processes since 1949–2001 in Qingdao area are selected, and the joint distribution of extreme water level and corresponding significant wave height in the same typhoon processes are established using the above Poisson bivariate compound maximum entropy distributions. The results show that all these four distributions are good enough to fit the original data. A novel grade of disaster-induced typhoon surges intensity is established based on the joint return period of extreme water level and corresponding significant wave height, and the disaster-induced typhoons in Qingdao verify this grade criterion.  相似文献   

6.
董前进  陈森林 《水文》2014,34(2):14-18
以三峡水库上游寸滩至万县区间降水预报误差和入库洪水预报误差相应数据为例,在探讨两者统计相关性的基础上,采用Frank、Gumbel、Clayton三种二元Copula连接函数分析了两预报误差的相关结构,以离差平方和最小为准则进行了Copula函数的选择,并与两预报误差独立情况下联合频率分布进行比较和分析。研究结果表明,降水预报误差和洪水预报误差的相关性对其二元联合分布有一定影响,同时,在两预报误差负相关条件下,其联合分布可做简化处理。本文研究结果可为水库预报调度风险管理提供决策参考。  相似文献   

7.
East River, one of the major tributaries of Pearl River, is the major source of water supply for mega-cites within and in the vicinity of the Pearl River Delta, China. The availability and variability of water resources of the East River basin are therefore of practical importance. This study aims to investigate the probabilistic behavior of hydrological droughts in the East River basin using the trivariate Plackett copula. Daily streamflow data for the period of 1975–2009 from 3 hydrological stations in the East River basin are analyzed. Defining hydrological droughts by drought severity, duration, and minimum flow, secondary return periods are computed. Results show that the Plackett copula satisfactorily models bivariate and trivariate probability distributions of correlated drought variables. Results of risk evaluation show an increasing drought risk from the upper to the lower East River basin. This result is important for basin-scale water resources management in the East River basin.  相似文献   

8.
The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony optimization for continuous domain (ACOR), and particle swarm optimization (PSO), have been used to train adaptive neuro-fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R2, root mean square error, RMSE (m3/s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis method in order to select the best inputs.  相似文献   

9.
Flood forecasting in large rivers with data-driven models   总被引:1,自引:1,他引:0  
Results from the application of adaptive neuro-fuzzy inference system (ANFIS) to forecast water levels at 3 stations along the mainstream of the Lower Mekong River are reported in this paper. The study investigated the effects of including water levels from upstream stations and tributaries, and rainfall as inputs to ANFIS models developed for the 3 stations. When upstream water levels in the mainstream were used as input, improvements to forecasts were realized only when the water levels from 1 or at most 2 upstream stations were included. This is because when there are significant contributions of flow from the tributaries, the correlation between the water levels in the upstream stations and stations of interest decreases, limiting the effectiveness of including water levels from upstream stations as inputs. In addition, only improvements at short lead times were achieved. Including the water level from the tributaries did not significantly improve forecast results. This is attributed mainly to the fact that the flow contributions represented by the tributaries may not be significant enough, given that there could be large volume of flow discharging directly from the catchments which are ungauged, into the mainstream. The largest improvement for 1-day forecasts was obtained for Kratie station where lateral flow contribution was 17 %, the highest for the 3 stations considered. The inclusion of rainfall as input resulted in significant improvements to long-term forecasts. For Thakhek, where rainfall is most significant, the persistence index and coefficient of efficiency for 5-lead-day forecasts improved from 0.17 to 0.44 and 0.89 to 0.93, respectively, whereas the root mean square error decreased from 0.83 to 0.69 m.  相似文献   

10.
The flood characteristics, namely, peak, duration and volume provide important information for the design of hydraulic structures, water resources planning, reservoir management and flood hazard mapping. Flood is a complex phenomenon defined by strongly correlated characteristics such as peak, duration and volume. Therefore, it is necessary to study the simultaneous, multivariate, probabilistic behaviour of flood characteristics. Traditional multivariate parametric distributions have widely been applied for hydrological applications. However, this approach has some drawbacks such as the dependence structure between the variables, which depends on the marginal distributions or the flood variables that have the same type of marginal distributions. Copulas are applied to overcome the restriction of traditional bivariate frequency analysis by choosing the marginals from different families of the probability distribution for flood variables. The most important step in the modelling process using copula is the selection of copula function which is the best fit for the data sample. The choice of copula may significantly impact the bivariate quantiles. Indeed, this study indicates that there is a huge difference in the joint return period estimation using the families of extreme value copulas and no upper tail copulas (Frank, Clayton and Gaussian) if there exists asymptotic dependence in the flood characteristics. This study suggests that the copula function should be selected based on the dependence structure of the variables. From the results, it is observed that the result from tail dependence test is very useful in selecting the appropriate copula for modelling the joint dependence structure of flood variables. The extreme value copulas with upper tail dependence have proved that they are appropriate models for the dependence structure of the flood characteristics and Frank, Clayton and Gaussian copulas are the appropriate copula models in case of variables which are diagnosed as asymptotic independence.  相似文献   

11.
基于三维copula函数的多水文区丰枯遭遇分析   总被引:5,自引:0,他引:5       下载免费PDF全文
谢华  罗强  黄介生 《水科学进展》2012,23(2):186-193
不同水文区的丰枯遭遇概率分析属于多变量概率分布问题,涉及的水文区越多,变量的维数就越高,问题就越复杂.为找到一种简单通用的多变量(n≥3)水文概率问题的求解方法,以不同水文区丰枯遭遇概率分析为例,引入三维copula函数构建多变量联合概率模型,将其用于分析长江、淮河及黄河流域的径流量的联合概率和条件概率问题。研究结果表明,当变量维数n≥3时,由copula函数可以很容易地构建多变量概率分布模型;对一组水文数据系列,有多个不同copula函数可以选择,可采用拟合优度检验方法择优;copula函数构建的多变量概率模型,可以计算各种条件下的联合概率分布,可以分析各种不同量级水文变量的遭遇概率和条件概率;通过与多维转换为一维方法的比较,三维Frank copula函数具有更优良的拟合优度、无偏性及有效性,且计算更简便。  相似文献   

12.
The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012–2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.  相似文献   

13.
以流域时空分布理论框架为基础,分析嫩江流域径流时空演化规律,并着重从地形地貌影响因素方面进行归因分析。采用1955-2003年49 a的降水资料和1955-1973年19 a的径流资料,通过对代表性水文站自上游至下游(空间上)径流、地表径流和地下径流的年内与年际(时间上)演变规律进行分析。结果表明:1)嫩江流域降水年内变化及年际变化过程基本一致,可以忽略降水时空分布对径流时空演化规律的影响。2)从径流年内演化规律上可以判定上下游水源组合的差异性:上游以地表径流为主,在春季来源于融雪,汛期来源于大气降水,枯水季节来源于地下水补给;下游全年以地下径流为主。3)由于坡度和水文地质条件作用,上游更容易产流,下游受下垫面调蓄作用更强,不易产流;因此,从径流年际演化规律上可以判定径流产量自上游至下游逐渐减小。  相似文献   

14.
Basin formation dynamics of the Tertiary Piedmont Basin (TPB) are here investigated by means of cross-section numerical modelling. Previous works hypothesised that basin subsidence occurred due first to extension (Oligocene) and then to subsequent loading due to back-thrusting (Miocene). However, structural evidence shows that the TPB was mainly under contraction from Oligocene until post Pliocene time while extension played a minor role. Furthermore, thermal indicators strongly call for a cold (flexure-induced) mechanism but are strictly inconsistent with a hot (thermally induced) mechanism. Our new modelling shows that the TPB stratigraphic features can be reproduced by flexure of a visco-elastic plate loaded by back-thrusts active in the Western Alps in Oligo-Miocene times. Far-field compression contributed to the TPB subsidence and controlled the basin infill geometry by enhancing basin tilting, forebulge uplift and erosion of the southern margin of the basin. These results suggest that the TPB subsidence is the result of a combination of mechanisms including thrust loading and far-field compressional stresses.  相似文献   

15.
变化环境下东江流域水文干旱特征及缺水响应   总被引:1,自引:0,他引:1       下载免费PDF全文
在干旱事件不确定性和枯期径流变异性的双重影响下,水文干旱特征时序非一致性问题为其联合分布模拟带来困难。基于东江干流测站日径流过程数据,采用游程理论提取水文干旱事件,并结合干旱特征均值变化、时序一致性分析及边缘分布模拟,以确定干旱事件融合及剔除评判标准的合理取值。基于Rosenblatt变换Cramer-von Mises检验统计量拟合方法,构建水文干旱特征两变量联合分布Copula模型,并根据同频法设计两变量组合值。通过对比枯期径流变点分隔子序列干旱特征,分析变化环境下东江流域水文干旱特征及缺水响应。结果表明:水文干旱事件融合和剔除的评判标准值分别取0.1和0.3比较合理。干旱特征两变量之间具有较高的正相关性,但不同时间系列不同变量之间的联合分布及边缘分布最优模型并不一致。流域水库尤其是新丰江水库的径流调节作用,对于缓解东江中下游水文干旱效果明显,超阈联合重现期为2年的设计干旱持续时间、总缺水量和最大日缺水量分别减少了63%~71%、71%~84%和30%~47%,但如果要满足东江河道内最小管理流量目标,其依然分别达到了12~18 d、6 114万~9 030万m3和715.0万~929.0万m3。  相似文献   

16.
沈倩娜  张霞 《水文》2021,41(2):80-85
2017年6月下旬到7月初,2019年7月上旬到中旬,湘江干流接连发生特大洪水。通过分析湘江流域多个测站的水文整编资料,结合部分实时信息,从降雨过程时空分布、干支流有关测站洪水水位流量过程、洪水组成、洪量、洪水传播时间与宣泄速度等方面,对2017年洪水与2019年洪水的暴雨洪水特征进行了对比分析。2017年洪水,湘潭站上游的衡山、衡阳、冷水滩站水位过程与流量过程对应呈双峰形状,而湘潭站水位过程没有出现双峰;2019年洪水,湘江干流上下游站点的水位过程与流量过程基本对应,均呈双峰形状;2017年洪水宣泄慢,2019年洪水宣泄极快。2017年洪水与2019年洪水流量过程与水位过程起伏不对应、洪水宣泄速度的差异主要是由于洞庭湖水位顶托因素影响导致。  相似文献   

17.
This paper aims to propose a procedure for modeling the joint probability distribution of bivariate uncertain data with a nonlinear dependence structure. First, the concept of dependence measures is briefly introduced. Then, both the Akaike Information Criterion and the Bayesian Information Criterion are adopted for identifying the best‐fit copula. Thereafter, simulation of copulas and bivariate distributions based on Monte Carlo simulation are presented. Practical application for serviceability limit state reliability analysis of piles is conducted. Finally, four load–test datasets of load–displacement curves of piles are used to illustrate the proposed procedure. The results indicate that the proposed copula‐based procedure can model and simulate the bivariate probability distribution of two curve‐fitting parameters underlying the load–displacement models of piles in a more general way. The simulated load–displacement curves using the proposed procedure are found to be in good agreement with the measured results. In most cases, the Gaussian copula, often adopted out of expedience without proper validation, is not the best‐fit copula for modeling the dependence structure underlying two curve‐fitting parameters. The conditional probability density functions obtained from the Gaussian copula differ considerably from those obtained from the best‐fit copula. The probabilities of failure associated with the Gaussian copula are significantly smaller than the reference solutions, which are very unconservative for pile safety assessment. If the strong negative correlation between the two curve‐fitting parameters is ignored, the scatter in the measured load–displacement curves cannot be simulated properly, and the probabilities of failure will be highly overestimated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The Ligurian Alps segment of the Alpine–Apennine orogen in NW Italy is unconformably covered by Upper Eocene to Holocene sediments in the Tertiary Piedmont Basin (TPB) and Po Plain. These sediments dip towards the north demonstrating the erosional nature of the southern border of the succession and implying that the adjacent orogenic belt formed the substratum rather than the margin of the sedimentary basin. Apatite (U–Th)/He and fission track thermochronology shows that the orogen first subsided and was buried at >4 km from 30 to 26 Ma and began its exhumation thereafter. From 26 Ma to present, this upward movement was contemporaneous with subsidence in the northern TPB. The couple exhumation in the S and subsidence in the N migrated northwards through time. Vertical movements in the area are similar to those reconstructed in Corsica. In both cases, the onset of exhumation becomes younger away from the Ligurian‐Provençal basin and has little correlation with the opening of the surrounding oceanic basins.  相似文献   

19.
Under the current condition of climate change, droughts and floods occur more frequently, and events in which flooding occurs after a prolonged drought or a drought occurs after an extreme flood may have a more severe impact on natural systems and human lives. This challenges the traditional approach wherein droughts and floods are considered separately, which may largely underestimate the risk of the disasters. In our study, the sudden alternation of droughts and flood events (ADFEs) between adjacent seasons is studied using the multivariate L-moments theory and the bivariate copula functions in the Huai River Basin (HRB) of China with monthly streamflow data at 32 hydrological stations from 1956 to 2012. The dry and wet conditions are characterized by the standardized streamflow index (SSI) at a 3-month time scale. The results show that: (1) The summer streamflow makes the largest contribution to the annual streamflow, followed by the autumn streamflow and spring streamflow. (2) The entire study area can be divided into five homogeneous sub-regions using the multivariate regional homogeneity test. The generalized logistic distribution (GLO) and log-normal distribution (LN3) are acceptable to be the optimal marginal distributions under most conditions, and the Frank copula is more appropriate for spring-summer and summer-autumn SSI series. Continuous flood events dominate at most sites both in spring-summer and summer-autumn (with an average frequency of 13.78% and 17.06%, respectively), while continuous drought events come second (with an average frequency of 11.27% and 13.79%, respectively). Moreover, seasonal ADFEs most probably occurred near the mainstream of HRB, and drought and flood events are more likely to occur in summer-autumn than in spring-summer.  相似文献   

20.
基于Copulas函数的二维干旱变量联合分布   总被引:1,自引:1,他引:0  
李计  李毅  宋松柏  崔晨风 《水文》2012,(1):43-49
通过构建干旱变量的联合分布揭示干旱演变规律,可作为干旱分析的重要手段。基于8种单参数族的Copulas函数进行新疆乌鲁木齐和石河子气象站二维干旱变量的联合分布。经拟合优度评价:Frank Copula对干旱历时和干旱烈度、干旱历时和烈度峰值的拟合度最好;Clayton Copula对于干旱烈度和烈度峰值的拟合效果最好。二维变量联合超越概率值随单变量值的减小而增大;单变量的重现期介于二维变量联合重现期与同现重现期之间。表明Copulas函数能够描述二维干旱特征变量的联合分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号