首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In CO2 geological storage (CGS) context, the evolution of the caprock sealing capacity has received increasing attention, particularly on a geological time span (thousands of years). At this time scale, geochemical reactions may enhance or weaken the caprock quality. It is widely recognized that, for the reservoir, geological heterogeneities affect the concentration and spatial distribution of CO2, and then affect the extent of gas–water–rock interactions, which in turn alters the hydrogeological properties of the reservoir. However, much less attention of these effects has been paid to the caprock. In this study, we presented and applied a novel approach to evaluate the effects of permeability and porosity heterogeneities on the alteration of minerals, the associated evolution of the caprock sealing efficiency and the containment of supercritical CO2 (scCO2) within the caprock. Even though this is a generic study, several conditions and parameters such as pressure, permeability, and mineral composition, were extracted from a caprock layer of the Shiqianfeng Formation in the Ordos Basin demonstration site in China. For the sake of simplification, a 2-dimensional model was designed to represent the caprock domain. We firstly generated an appropriate heterogeneous random field of permeability with the average permeability taken from the uppermost mudstone layer of the Shiqianfeng Formation, and then the heterogeneity in porosity was incorporated using a joint normal distribution method based on the available data. Homogeneous mineral compositions of the reservoir and caprock were used in all simulations. Simulations of three cases were performed, including a homogeneous case, a case with only permeability heterogeneity and a case with both permeability and porosity heterogeneities. The results demonstrate dramatic influences of permeability and porosity heterogeneities on the migration of scCO2 within the caprock, the alteration of minerals, and therefore the evolution of the caprock sealing quality. Specific to the data used in this study, hydrogeological heterogeneities facilitated the overall penetration of scCO2 within the caprock and promoted the alteration of minerals, thereby weakening the caprock sealing efficiency over the simulation time.  相似文献   

2.
Deep saline aquifers still remain a significant option for the disposal of large amounts of CO2 from the atmosphere as a means of mitigating global climate change. The small scale Carbon Capture and Sequestration demonstration project in Ordos Basin, China, operated by the Shenhua Group, is the only one of its kind in Asia, to put the multilayer injection technology into practice. This paper aims at studying the influence of temperature, injection rate and horizontal boundary effects on CO2 plume transport in saline formation layers at different depths and thicknesses, focusing on the variations in CO2 gas saturation and mass fraction of dissolved CO2 in the formation of brine in the plume’s radial three-dimensional field around the injection point, and interlayer communication between the aquifer and its confining beds of relatively lower permeability. The study uses the ECO2N module of TOUGH2 to simulate flow and pressure configurations in response to small-scale CO2 injection into multilayer saline aquifers. The modelling domain involves a complex multilayer reservoir–caprock system, comprising of a sequence of sandstone aquifers and sealing units of mudstone and siltstone layers extending from the Permian Shanxi to the Upper Triassic Liujiagou formation systems in the Ordos Basin. Simulation results indicate that CO2 injected for storage into deep saline aquifers cause a significant pressure perturbation in the geological system that may require a long duration in the post-injection period to establish new pressure equilibrium. The multilayer simultaneous injection scheme exhibits mutual interference with the intervening sealing layers, especially when the injection layers are very close to each other and the corresponding sealing layers are thin. The study further reveals that injection rate and temperature are the most significant factors for determining the lateral and vertical extent that the CO2 plume reaches and which phase and amount will exist at a particular time during and after the injection. In general, a large number of factors may influence the CO2–water fluid flow system considering the complexity in the real geologic sequence and structural configurations. Therefore, optimization of a CO2 injection scheme still requires pursuance of further studies.  相似文献   

3.
Deep saline aquifers in sedimentary basins are considered to have the greatest potential for CO2 geological storage in order to reduce carbon emissions. CO2 injected into a saline sandstone aquifer tends to migrate upwards toward the caprock because the density of the supercritical CO2 phase is lower than that of formation water. The accumulated CO2 in the upper portions of the reservoir gradually dissolves into brine, lowers pH and changes the aqueous complexation, whereby induces mineral alteration. In turn, the mineralogical composition could impose significant effects on the evolution of solution, further on the mineralized CO2. The high density of aqueous phase will then move downward due to gravity, give rise to “convective mixing,” which facilitate the transformation of CO2 from the supercritical phase to the aqueous phase and then to the solid phase. In order to determine the impacts of mineralogical compositions on trapping amounts in different mechanisms for CO2 geological storage, a 2D radial model was developed. The mineralogical composition for the base case was taken from a deep saline formation of the Ordos Basin, China. Three additional models with varying mineralogical compositions were carried out. Results indicate that the mineralogical composition had very obvious effects on different CO2 trapping mechanisms. Specific to our cases, the dissolution of chlorite provided Mg2+ and Fe2+ for the formation of secondary carbonate minerals (ankerite, siderite and magnesite). When chlorite was absent in the saline aquifer, the dominant secondary carbon sequestration mineral was dawsonite, and the amount of CO2 mineral trapping increased with an increase in the concentration of chlorite. After 3000 years, 69.08, 76.93, 83.52 and 87.24 % of the injected CO2 can be trapped in the solid (mineral) phase, 16.05, 11.86, 8.82 and 6.99 % in the aqueous phase, and 14.87, 11.21, 7.66 and 5.77 % in the gas phase for Case 1 through 4, respectively.  相似文献   

4.
In the context of carbon capture and storage, deep underground injection of CO2 induces the geomechanical changes within and around the injection zone and their impact on CO2 storage security should be evaluated. In this study, we conduct coupled multiphase fluid flow and geomechanical modeling to investigate such geomechanical changes, focusing on probabilistic analysis of injection-induced fracture reactivation (such as shear slip) that could lead to enhanced permeability and CO2 migration across otherwise low-permeability caprock formations. Fracture reactivation in terms of shear slip was analyzed by implicitly considering the fracture orientations generated using the Latin hypercube sampling method, in one case using published fracture statistics from a CO2 storage site. The analysis was conducted by a coupled multiphase fluid flow and geomechanical simulation to first calculate the three-dimensional stress evolution during a hypothetical CO2 injection operation and then evaluate the probability of shear slip considering the statistical fracture distribution and a Coulomb failure analysis. We evaluate the probability of shear slip at different points within the injection zone and in the caprock just above the injection zone and relate this to the potential for opening of new flow paths through the caprock. Our analysis showed that a reverse faulting stress field would be most favorable for avoiding fracture shear reactivation, but site-specific analyses will be required because of strong dependency of the local stress field and fracture orientations.  相似文献   

5.
Geological storage of CO2 is considered a solution for reducing the excess CO2 released into the atmosphere. Low permeability caprocks physically trap CO2 injected into underlying porous reservoirs. Injection leads to increasing pore pressure and reduced effective stress, increasing the likelihood of exceeding the capillary entry pressure of the caprocks and of caprock fracturing. Assessing on how the different phases of CO2 flow through caprock matrix and fractures is important for assessing CO2 storage security. Fractures are considered to represent preferential flow paths in the caprock for the escape of CO2. Here we present a new experimental rig which allows 38 mm diameter fractured caprock samples recovered from depths of up to 4 km to be exposed to supercritical CO2 (scCO2) under in situ conditions of pressure, temperature and geochemistry. In contrast to expectations, the results indicate that scCO2 will not flow through tight natural caprock fractures, even with a differential pressure across the fractured sample in excess of 51 MPa. However, below the critical point where CO2 enters its gas phase, the CO2 flows readily through the caprock fractures. This indicates the possibility of a critical threshold of fracture aperture size which controls CO2 flow along the fracture.  相似文献   

6.
Geochemical interactions of brine–rock–gas have a significant impact on the stability and integrity of the caprock for long-term CO2 geological storage. Invasion of CO2 into the caprock from the storage reservoir by (1) molecular diffusion of dissolved CO2, (2) CO2-water two-phase flow after capillary breakthrough, and (3) CO2 flow through existing open fractures may alter the mineralogy, porosity, and mechanical strength of the caprock due to the mineral dissolution or precipitation. This determines the self-enhancement or self-sealing efficiency of the caprock. In this paper, two types of caprock, a clay-rich shale and a mudstone, are considered for the modeling analyses of the self-sealing and self-enhancement phenomena. The clay-rich shale taken from the Jianghan Basin of China is used as the base-case model. The results are compared with a mudstone caprock which is compositionally very different than the clay-rich shale. We focus on mineral alterations induced by the invasion of CO2, feedback on medium properties such as porosity, and the self-sealing efficiency of the caprock. A number of sensitivity simulations are performed using the multiphase reactive transport code TOUGHREACT to identify the major minerals that have an impact on the caprock’s self-sealing efficiency. Our model results indicate that under the same hydrogeological conditions, the mudstone is more suitable to be used as a caprock. The sealing distances are barely different in the two types of caprock, both being about 0.6 m far from the interface between the reservoir and caprock. However, the times of occurrence of sealing are considerably different. For the mudstone model, the self-sealing occurs at the beginning of simulation, while for the clay-rich shale model, the porosity begins to decline only after 100 years. At the bottom of the clay-rich shale column, the porosity declines to 0.034, while that of mudstone declines to 0.02. The sensitive minerals in the clay-rich shale model are calcite, magnesite, and smectite-Ca. Anhydrite and illite provide Ca2+ and Mg2+ to the sensitive minerals for their precipitation. The mudstone model simulation is divided into three stages. There are different governing minerals in different stages, and the effect of the reservoir formation water on the alteration of sensitive minerals is significant.  相似文献   

7.
Fluid inclusions have recorded the history of degassing in basalt. Some fluid inclusions in olivine and pyroxene phenocrysts of basalt were analyzed by micro-thermometry and Raman spectroscopy in this paper. The experimental results showed that many inclusions are present almost in a pure CO2 system. The densities of some CO2 inclusions were computed in terms of Raman spectroscopic characteristics of CO2 Fermi resonance at room temperature. Their densities change over a wide range, but mainly between 0.044 g/cm3 and 0.289 g/cm3. Their micro-thermometric measurements showed that the CO2 inclusions examined reached homogenization between 1145.5℃ and 1265℃ . The mean value of homogenization temperatures of CO2 inclusions in basalts is near 1210℃. The trap pressures (depths) of inclusions were computed with the equation of state and computer program. Distribution of the trap depths makes it know that the degassing of magma can happen over a wide pressure (depth) range, but mainly at the depth of 0.48 km to 3.85 km. This implicates that basalt magma experienced intensive degassing and the CO2 gas reservoir from the basalt magma also may be formed in this range of depths. The results of this study showed that the depth of basalt magma degassing can be forecasted from CO2 fluid inclusions, and it is meaningful for understanding the process of magma degassing and constraining the inorganogenic CO2 gas reservoir.  相似文献   

8.
CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve the goal of energy exploitation and CO2 geological sequestration. Taking Zhacanggou as research area, a “Three-spot” well pattern (one injection with two production), “wellbore–reservoir” coupled model is built, and a constant injection rate is set up. A fully coupled wellbore–reservoir simulator—T2Well—is introduced to study the flow mechanism of CO2 working as heat transmission fluid, the variance pattern of each physical field, the influence of CO2 injection rate on heat extraction and the potential and sustainability of heat resource in Guide region. The density profile variance resulting from temperature differences of two wells can help the system achieve “self-circulation” by siphon phenomenon, which is more significant in higher injection rate cases. The density of CO2 is under the effect of both pressure and temperature; moreover, it has a counter effect on temperature and pressure. The feedback makes the flow process in wellbore more complex. In low injection rate scenarios, the temperature has a dominating impact on the fluid density, while in high rate scenario, pressure plays a more important role. In most scenarios, it basically keeps stable during 30-year operation. The decline of production temperature is <5 °C. However, for some high injection rate cases (75 and 100 kg/s), due to the heat depletion in reservoir, there is a dramatic decline for production temperature and heat extraction rate. Therefore, a 50-kg/s CO2 injection rate is more suitable for “Three-spot” well pattern in Guide region.  相似文献   

9.
Spring wheat (Triticum aestivum Linn.) is an important crop for food security in the desert-oasis farmland in the middle reaches of the Heihe River in northwestern China. We measured fluxes using eddy covariance and meteorological parameters to explore the energy fluxes and the relationship between CO2 flux and climate change in this region during the wheat growing seasons in 2013 and 2014. The energy balance closures were 70.5% and 72.7% in the 2013 and 2014 growing season, respectively. The wheat ecosystem had distinct seasonal and diurnal dynamics of CO2 fluxes with U-shaped curves. The accumulated net ecosystemic CO2 exchanges (NEE) were -111.6 and -142.2 g C/m2 in 2013 and 2014 growing season, respectively. The ecosystem generally acted as a CO2 sink during the growing season but became a CO2 source after the wheat harvest. A correlation analysis indicated that night-time CO2 fluxes were exponentially dependent on air temperature and soil temperature at a depth of 5 cm but were not correlated with soil-water content, water-vapour pressure, or vapour-pressure deficit. CO2 flux was not correlated with the meteorological parameters during daytime. However, irrigation and precipitation, may complicate the response of CO2 fluxes to other meteorological parameters.  相似文献   

10.
 Planewave pseudopotential calculations of supercell total energies were used as bases for first-principles calculations of the CaCO3–MgCO3 and CdCO3–MgCO3 phase diagrams. Calculated phase diagrams are in qualitative to semiquantitative agreement with experiment. Two unobserved phases, Cd3Mg (CO3)4 and CdMg3(CO3)4, are predicted. No new phases are predicted in the CaCO3–MgCO3 system, but a low-lying metastable Ca3Mg(CO3)4 state, analogous to the Cd3Mg(CO3)4 phase is predicted. All of the predicted lowest-lying metastable states, except for huntite CaMg3(CO3)4, have dolomite-related structures, i.e. they are layer structures in which A m B n cation layers lie perpendicular to the rhombohedral [111] vector. Received: 6 May 2002 / Accepted: 23 October 2002 Acknowledgements This work was partially supported by NSF contract DMR-0080766 and NIST.  相似文献   

11.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.  相似文献   

12.
The objective of this paper was to investigate the THM-coupled responses of the storage formation and caprock, induced by gas production, CO2-EGR (enhanced gas recovery), and CO2-storage. A generic 3D planer model (20,000?×?3,000?×?100?m, consisting of 1,200?m overburden, 100?m caprock, 200?m gas reservoir, and 1,500?m base rock) is adopted for the simulation process using the integrated code TOUGH2/EOS7C-FLAC3D and the multi-purpose simulator OpenGeoSys. Both simulators agree that the CO2-EGR phase under a balanced injection rate (31,500?tons/year) will cause almost no change in the reservoir pressure. The gas recovery rate increases 1.4?% in the 5-year CO2-EGR phase, and a better EGR effect could be achieved by increasing the distance between injection and production wells (e.g., 5.83?% for 5?km distance, instead of 1.2?km in this study). Under the considered conditions there is no evidence of plastic deformation and both reservoir and caprock behave elastically at all operation stages. The stress path could be predicted analytically and the results show that the isotropic and extensional stress regime will switch to the compressional stress regime, when the pore pressure rises to a specific level. Both simulators agree regarding modification of the reservoir stress state. With further CO2-injection tension failure in reservoir could occur, but shear failure will never happen under these conditions. Using TOUGH-FLAC, a scenario case is also analyzed with the assumption that the reservoir is naturally fractured. The specific analysis shows that the maximal storage pressure is 13.6?MPa which is determined by the penetration criterion of the caprock.  相似文献   

13.
The utilization of anthropogenic CO2 for enhanced oil recovery (EOR) can significantly extend the production life of an oil field, and help in the reduction of atmospheric emission of anthropogenic CO2 if sequestration is considered. This work summarizes the prospect of EOR and sequestration using CO2 flooding from an Indian mature oil field at Cambay basin through numerical modelling, simulation and pressure study based on limited data provided by the operator. To get an insight into CO2-EOR and safe storage process in this oil field, a conceptual sector model is developed and screening standard is proposed keeping in mind the major pay zone of the producing reservoir. To construct the geomodel, depth maps, well positions and coordinates, well data and well logs, perforation depths and distribution of petrophysical properties as well as fluid properties provided by the operator, has been considered. Based on the results from the present study, we identified that the reservoir has the potential for safe and economic geological sequestration of 15.04×106 metric ton CO2 in conjunction with a substantial increase in oil recovery of 10.4% of original oil in place. CO2-EOR and storage in this mature field has a bright application prospect since the findings of the present work could be a better input to manage the reservoir productivity, and the pressure field for significant enhancement of oil recovery followed by safe storage.  相似文献   

14.
A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 day−1 were injected from a 100-m long, ~2.5-m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0–10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.  相似文献   

15.
A numerical model was developed to investigate the potential to detect fluid migration in a (homogeneous, isotropic, with constant pressure lateral boundaries) porous and permeable interval overlying an imperfect primary seal of a geologic CO2 storage formation. The seal imperfection was modeled as a single higher-permeability zone in an otherwise low-permeability seal, with the center of that zone offset from the CO2 injection well by 1400 m. Pressure response resulting from fluid migration through the high-permeability zone was detectable up to 1650 m from the centroid of that zone at the base of the monitored interval after 30 years of CO2 injection (detection limit = 0.1 MPa pressure increase); no pressure response was detectable at the top of the monitored interval at the same point in time. CO2 saturation response could be up to 774 m from the center of the high-permeability zone at the bottom of the monitored interval, and 1103 m at the top (saturation detection limit = 0.01). More than 6% of the injected CO2, by mass, migrated out of primary containment after 130 years of site performance (including 30 years of active injection) in the case where the zone of seal imperfection had a moderately high permeability (10??17 m2 or 0.01 mD). Free-phase CO2 saturation monitoring at the top of the overlying interval provides favorable spatial coverage for detecting fluid migration across the primary seal. Improved sensitivity of detection for pressure perturbation will benefit time of detection above an imperfect seal.  相似文献   

16.
17.
Modeling geological carbon storage represents a new and substantial challenge for the subsurface geosciences. To increase understanding and make good engineering decisions, containment processes and large-scale storage operations must be simulated in a thousand-year perspective. Large differences in spatial and temporal scales make it prohibitively expensive to compute the fate of injected CO2 using traditional 3D simulators. Instead, accurate forecast can be computed using simplified models that are adapted to the specific setting of the bouyancy-driven migration of the light fluid phase. This paper presents a family of vertically integrated models for studying the combined large-scale and long-term effects of structural, residual, and solubility trapping of CO2. The models are based on an assumption of a sharp interface separating CO2 and brine and can provide a detailed inventory of the injected CO2 volumes over periods of thousands of years within reasonable computational time. To be compatible with simulation tools used in industry, the models are formulated in a black-oil framework. The models are implemented in MRST-co2lab, which is an open community software developed especially to study and optimize large-scale, long-term geological storage of CO2. The resulting simulators are fully implicit and handle input from standard geomodeling tools.  相似文献   

18.
CH4 and CO2 fluxes from a high-cold swamp meadow and an alpine meadow on the Qinghai-Tibetan Plateau, subject to different degrees of degradation, were measured over a 12-month period. Air temperature, soil temperature and moisture, and the depths of the water table and thawing-freezing layer were determined. For swamp meadows, the greater the degradation, the lesser the carbon efflux. CH4 emissions at the nondegraded swamp meadow site were 1.09–3.5 and 2.5–11.27 times greater, and CO2 emissions 1.08–1.69 and 1.41–4.43 times greater, respectively, than those from moderately and severely degraded sites. For alpine meadows, the greater the degradation, the greater the CH4 consumption and CO2 emissions. CH4 consumption at the severely degraded alpine meadow site was 6.6–21 and 1.1–5.25 times greater, and CO2 emissions 1.05–78.5 and 1.04–6.28 times greater, respectively, than those from the nondegraded and moderately degraded sites. The CH4 and CO2 fluxes at both sites were significantly correlated (R 2 > 0.59, P < 0.05) with air temperature, soil temperature, and topsoil (0–5 cm depth) moisture, indicating these to be the main environmental factors affecting such fluxes.  相似文献   

19.
Safety assessment of geosequestration of CO2 into deep saline aquifers requires a precise understanding of the study of hydro‐chemo‐mechanical couplings occurring in the rocks and the cement well. To this aim, a coupled chemo‐poromechanical model has been developed and implemented into a research code well‐suited to the resolution of fully coupled problems. This code is based on the finite volume methods. In a 1D axisymmetrical configuration, this study aims to simulate the chemo‐poromechanical behaviour of a system composed by the cement well and the caprock during CO2 injection. Major chemical reactions of carbonation occurring into cement paste and rocks are considered in order to evaluate the consequences of the presence of CO2 on the amount of dissolved matrix and precipitated calcium carbonates. The dissolution of the solid matrix is taken into account through the use of a chemical porosity. Matrix leaching and carbonation lead, as expected, to important variations of porosity, permeability and to alterations of transport properties and mechanical stiffness. These results justify the importance of considering a coupled analysis accounting for the main chemical reactions. It is worth noting that the modelling framework proposed in the present study could be extended to model the chemo‐poromechanical behaviour of the reservoir rock and the caprock when subjected to the presence of an acidic pore fluid (CO2‐rich brine). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we focus on the geological storage of CO2 in reservoirs with zones that are cold enough to facilitate CO2 hydrate formation at local pressures. A 2D hydro-chemical mechanical model which has five layers (three layers with aquifers and two layers with cap rock in which we introduced two fractures) is created. We apply a reactive transport reservoir simulator, RetrasoCodeBright (RCB), in which hydrate is treated as a pseudo mineral. Following the recent modifications to account for hydrate dynamics in the code through a kinetic approach (Kvamme et al., Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 2011b), we have further improved the simulator to implement the nonequilibrium thermodynamic calculations. In the present study, we spot the light on the hydrate formation effects on porosity in different regions, as well as on the flow pattern. These simulations are based on classical relationships between porosity and permeability, but the outline of ongoing modifications is presented as well. A critical question in such systems is whether hydrate formation can contribute to stabilizing the storage, given that hydrates are pore filling and cannot be stable toward mineral surfaces. The implications of hydrate formation on the geo-mechanical properties of the model reservoir are other aspects addressed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号