首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subsurface formations are characterized by heterogeneity over multiple length scales, which can have a strong impact on flow and transport. In this paper, we present a new upscaling approach, based on time-of-flight (TOF), to generate upscaled two-phase flow functions. The method focuses on more accurate representations of local saturation boundary conditions, which are found to have a dominant impact (in comparison to the pressure boundary conditions) on the upscaled two-phase flow models. The TOF-based upscaling approach effectively incorporates single-phase flow and transport information into local upscaling calculations, accounting for the global flow effects on saturation, as well as the local variations due to subgrid heterogeneity. The method can be categorized into quasi-global upscaling techniques, as the global single-phase flow and transport information is incorporated in the local boundary conditions. The TOF-based two-phase upscaling can be readily integrated into any existing local two-phase upscaling framework, thus more flexible than local–global two-phase upscaling approaches developed recently. The method was applied to permeability fields with different correlation lengths and various fluid-mobility ratios. It was shown that the new method consistently outperforms existing local two-phase upscaling techniques, including recently developed methods with improved local boundary conditions (such as effective flux boundary conditions), and provides accurate coarse-scale models for both flow and transport.  相似文献   

2.
During the past two decades, numerous datasets have been developed for global/regional hydrological assessment and modeling, but these datasets often show differences in their spatial and temporal distributions of precipitation, which is one of the most critical input variables in global/regional hydrological modeling. This paper is aimed to explore the precipitation characteristics of the Water and Global Change (WATCH) forcing data (WFD) and compare these with the corresponding characteristics derived from satellite-gauge data (TRMM 3B42 and GPCP 1DD) and rain gauge data. It compared the consistency and difference between the WFD and satellite-gauge data in India and examined whether the pattern of seasonal (winter, pre-monsoon, monsoon and post-monsoon) precipitation over six regions [e.g. North Mountainous India (NMI), Northwest India (NWI), North Central India (NCI), West Peninsular India (WPI), East Peninsular India (EPI) and South Peninsular India (SPI)] of India agrees well for the gridded data to be useful in precipitation variability analyses. The multi-time scale of precipitation in India was analysed by wavelet transformation method using gauged and WFD precipitation data. In general, precipitation from WFD is larger than that from satellite-gauge data in NMI and Western Ghats region whereas it is smaller in the dry region of NWI. Both WFD and satellite-gauge datasets underestimate precipitation compared to the measured data but the precipitation from WFD is better estimated than that from satellite-gauge data. It was found that the wavelet power spectrum of precipitation based on WFD is reasonably close to that of measured precipitation in NWI and NCI, while slightly different in NMI. It is felt that the WFD data can be used as a potential dataset for hydrological study in India.  相似文献   

3.
4.
本文探索了海潮负荷特征值的反演方法.基于中国近岸海岛GPS站(平潭与闸坡)观测数据,采用FFT方法提取了海潮负荷特征值,分析了反演特征值与全球海潮模型FES2004、NAO.99b和GOT4.7计算出的相关特征值之间的差异,评估了反演海潮分潮频率项的精度,并利用平潭站得到的海潮负荷特征值对附近的三沙站进行海潮改正以评价反演效果.结果表明:(1)频谱分析可精确提取4个半日分潮和4个全日分潮负荷的频率信息;与已知频率相比,P1分潮的反演频率误差为1.4%,其他7种分潮负荷反演频率误差均小于1%.(2)两个海岛分属不同的潮波入侵通道,反演分潮振幅和初相存在差异,但反演分潮频率几乎一致,间接证实它们属于同一潮波系统,也表明其潮差有别.(3)反演振幅与三种全球模型具有较好的一致性;其中S2、O1、P1、Q1四个分潮在水平方向互差为1~2 mm,高程方向上的互差均小于3 mm;K2、K1、M2、N2在水平方向振幅互差多数小于2 mm,个别差异高达4 mm,高程方向互差多为5~6 mm,个别超过10 mm.(4)反演得到海潮负荷改正模型相对于3种全球模型在三沙站的改正效果略佳,间接表明反演结果有效、可靠.(5)动态PPP结果中虽然存在多种误差,其时间序列仍可分离并提取海潮负荷的影响.  相似文献   

5.
A Fast and Reliable Method for Surface Wave Tomography   总被引:6,自引:0,他引:6  
—?We describe a method to invert regional or global scale surface-wave group or phase-velocity measurements to estimate 2-D models of the distribution and strength of isotropic and azimuthally anisotropic velocity variations. Such maps have at least two purposes in monitoring the nuclear Comprehensive Test-Ban Treaty (CTBT): (1) They can be used as data to estimate the shear velocity of the crust and uppermost mantle and topography on internal interfaces which are important in event location, and (2) they can be used to estimate surface-wave travel-time correction surfaces to be used in phase-matched filters designed to extract low signal-to-noise surface-wave packets.¶The purpose of this paper is to describe one useful path through the large number of options available in an inversion of surface-wave data. Our method appears to provide robust and reliable dispersion maps on both global and regional scales. The technique we describe has a number of features that have motivated its development and commend its use: (1) It is developed in a spherical geometry; (2) the region of inference is defined by an arbitrary simple closed curve so that the method works equally well on local, regional, or global scales; (3) spatial smoothness and model amplitude constraints can be applied simultaneously; (4) the selection of model regularization and the smoothing parameters is highly flexible which allows for the assessment of the effect of variations in these parameters; (5) the method allows for the simultaneous estimation of spatial resolution and amplitude bias of the images; and (6) the method optionally allows for the estimation of azimuthal anisotropy.¶We present examples of the application of this technique to observed surface-wave group and phase velocities globally and regionally across Eurasia and Antarctica.  相似文献   

6.
The algorithm for the solution of a three-dimensional (3D) structural inverse problem in potential theory is described. The algorithm is based on the method of linear integral representations and on the method of extending compacts. The proposed approach is verified on model examples for an anomalous gravity field.  相似文献   

7.
Heejun Suk 《Ground water》2016,54(4):508-520
MT3DMS, a modular three‐dimensional multispecies transport model, has long been a popular model in the groundwater field for simulating solute transport in the saturated zone. However, the method of characteristics (MOC), modified MOC (MMOC), and hybrid MOC (HMOC) included in MT3DMS did not treat Cauchy boundary conditions in a straightforward or rigorous manner, from a mathematical point of view. The MOC, MMOC, and HMOC regard the Cauchy boundary as a source condition. For the source, MOC, MMOC, and HMOC calculate the Lagrangian concentration by setting it equal to the cell concentration at an old time level. However, the above calculation is an approximate method because it does not involve backward tracking in MMOC and HMOC or allow performing forward tracking at the source cell in MOC. To circumvent this problem, a new scheme is proposed that avoids direct calculation of the Lagrangian concentration on the Cauchy boundary. The proposed method combines the numerical formulations of two different schemes, the finite element method (FEM) and the Eulerian–Lagrangian method (ELM), into one global matrix equation. This study demonstrates the limitation of all MT3DMS schemes, including MOC, MMOC, HMOC, and a third‐order total‐variation‐diminishing (TVD) scheme under Cauchy boundary conditions. By contrast, the proposed method always shows good agreement with the exact solution, regardless of the flow conditions. Finally, the successful application of the proposed method sheds light on the possible flexibility and capability of the MT3DMS to deal with the mass transport problems of all flow regimes.  相似文献   

8.
The two key requirements in conducting 3-D simultaneous traveltime tomography on real data at the regional and global scale with multiple classes of arrival time information are (1) it needs an efficient and accurate arrival tracking algorithm for multiply transmitted, reflected (or refracted) and converted waves in a 3-D variable velocity model with embedded velocity discontinuities (or subsurface interfaces), and (2) a subdimensional inversion solver is required which can easily search for different types of model parameters to balance the trade-off between the different types of model parameter updated in the simultaneous inversion process. For these purposes, we first extend a popular grid/cell-based wavefront expanding ray tracing algorithm (the multistage irregular shortest-path ray tracing method), which previously worked only in Cartesian coordinate at the local scale, to spherical coordinates appropriate to the regional or global scale. We then incorporated a fashionable inversion solver (the subspace method) to formulate a simultaneous inversion algorithm, in which the multiple classes of arrivals (including direct and reflected arrivals from different velocity discontinuities) can be used to simultaneously update both the velocity fields and the reflector geometries. Numerical tests indicate that the new inversion method is both applicable and flexible in terms of computational efficiency and solution accuracy, and is not sensitive to a modest level of noise in the traveltime data. It offers several potential benefits over existing schemes for real data seismic imaging.  相似文献   

9.
ABSTRACT

Although it is conceptually assumed that global models are relatively ineffective in modelling the highly unstable structure of chaotic hydrologic dynamics, there is not a detailed study of comparing the performances of local and global models in a hydrological context, especially with new emerging machine learning models. In this study, the performance of a local model (k-nearest neighbour, k-nn) and, as global models, several recent machine learning models – artificial neural network (ANN), least square-support vector regression (LS-SVR), random forest (RF), M5 model tree (M5), multivariate adaptive regression splines (MARS) – was analysed in multivariate chaotic forecasting of streamflow. The models were developed for Australia’s largest river, the River Murray. The results indicate that the k-nn model was more successful than the global models in capturing the streamflow dynamics. Furthermore, coupled with the multivariate phase-space, it was shown that the global models can be successfully used for obtaining reliable uncertainty estimates for streamflow.  相似文献   

10.
Waves propagating through a sequence of layers that are thin compared with the wavelength show effects of anisotropy: velocity and displacement direction depend on the angle between the plane of layering and the wave normal, and shear waves split up into two distinct types of different velocity. The layered medium can thus be replaced by a transversely isotrophic medium the parameters of which depend on the parameters of the individual constituent layers. A survey of the anisotropy effects possible in such a medium is generally done by varying the layer parameters in order to obtain different replacement media. This approach guarantees that the replacement medium is realistic, but it does not guarantee adequate sampling of the set of replacement media. To this end one has to begin by selecting the replacement media and then check whether the chosen media possess stable (and eventually realistic) representations by layer sequences. In general, there is an infinite number of layer representations for any transversely isotropic medium that can at all be represented. However, if one restricts the solutions to those requiring the minimal number of layers and the minimum number of different layer parameters, the set of solutions has only one free parameter (i.e., it is a one-dimensional manifold), and an important subset even has a unique solution. A simple algorithm exists for the determination of these “simplest representations”. Aside from sampling the set of representable transversely isotropic media for survey purposes, the method can be applied to the problem of determining the cause of observed anisotropy effects (or lateral changes in such effects). If this method can be applied to real data, it would for instance allow to determine changes in relative thickness or lithology on a scale smaller than the limit of resolution of the seismic method.  相似文献   

11.
The variation in surface wetness index (SWI), which was derived from global gridded monthly precipi- tation and monthly mean surface air temperature datasets of Climatic Research Unit (CRU), from 1951― 2002 over global land was analyzed in this paper. The characteristics of the SWI variation in global continents, such as North America, South America, Eurasia, Africa, and Australia, were compared. In addition, the correlation between the SWI variation of each continent (or across the globe) and the large-scale background closely related to SST variations, which affects climate change, was analyzed. The results indicate that the SWI variation shows distinct regional characteristics in the second half of the 20th century under global warming. A drying trend in the last 52 years occurred in Africa, Eurasia, Australia and South America, most obviously in Africa and Eurasia. North America shows a wetting trend after 1976. A 30-year period of dry-wet oscillation is found in South America and Australia; the latest is in a drying period in two regions. The results also revealed that global warming has changed the dry-wet pattern of the global land. South America and Australia have a drying trend despite in- creases in precipitation. This indicates that increases in surface air temperature cannot be ignored in aridification studies. Global dry-wet variation is closely related to large-scale SST variations: the drying trend in Africa and Eurasia and the wetting trend in North America are correlated with Pacific Decadal Oscillation (PDO); the interdecadal oscillation of SWI in South America and Australia is consistent with the interdecadal variation in Southern Oscillation Index (SOI).  相似文献   

12.
马尔科夫链蒙特卡洛方法(MCMC)是一种启发式的全局寻优算法,可以用来解决概率反演的问题.基于MCMC方法的反演不依赖于准确的初始模型,可以引入任意复杂的先验信息,通过对先验概率密度函数的采样来获得大量的后验概率分布样本,在寻找最优解的过程中可以跳出局部最优得到全局最优解.MCMC方法由于计算量巨大,应用难度较高,在地...  相似文献   

13.
实际地震信号通常可表示为具有波形特征差异的多种基本波形信号的线性组合,如叠前道集中的工频干扰噪声与有效波信号、面波噪声与体波信号等.选择单一数学变换方法,往往不易实现地震信号的稀疏表示.近年来发展的形态成分分析理论,通过联合多种数学变换,可实现对复杂信号的稀疏表示.本文根据单道地震记录中面波与体波信号波形结构特征的差异性,提出一种基于形态成分分析的面波噪声衰减方法.针对面波的低频、窄带以及频散特性选择一维平稳小波变换作为其稀疏表示字典,而针对体波波形的局部相关特性选择局部离散余弦变换作为其稀疏表示字典,建立基于双波形字典的形态成分分析模型,通过求解该稀疏优化问题获得最终的信噪分离结果.理论模型和实际地震资料处理证实该方法不仅能够衰减单炮地震记录中的强面波干扰噪声,同时能够更好地保护有效信号的波形特征与频谱带宽,为地震资料的后续处理和分析提供良好的数据基础.  相似文献   

14.
Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite‐derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to < 4·7M km2). For the period of study, results suggest basin‐wide total water storage changes in the Amazon vary by approximately + /? 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /? 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
全球电离层TEC起伏特性分析   总被引:6,自引:2,他引:4       下载免费PDF全文
利用全球电离层TEC地图(GIMs)数据,在已经建立TEC气候学模式的基础上,计算了1998年以来固定UT时间的全球TEC起伏指数σDGEC.采用偏相关分析方法对σDGEC与太阳活动(F107指数)及其起伏(dF107)、地磁活动(Ap指数)、季节变化因子(太阳偏置角)等因素,以及上述因素的非线性组合等的相关性进行分析,发现σDGEC与F107、Ap指数具有最强的相关性,与F107指数和半年变化因子的交叉项F107×S、F107指数的二次方具有较好的相关性,同时,与F107指数与年变化因子的交叉项F107×A及F107扰动指数偏离值(dF107)的二次方也具有一定的相关性.据此,以这些因子作为驱动量,建立了σDGEC的多元回归模型.鉴于σDGEC反映全球范围内电离层TEC起伏的平均特性,并与太阳活动F107指数、地磁活动Ap指数具有良好的相关性,为此我们建议,将全球TEC相对起伏指数σDGEC作为描述全球电离层扰动状态及电离层天气特征的一个新参量.  相似文献   

16.
Radiative properties of cirrus clouds are one of the major unsolved problems in climate studies and global radiation budget. These clouds are generally composed of various ice-crystal shapes, so we tried to evaluate effects of the ice-crystal shape on radiative fluxes. We calculated radiative fluxes of cirrus clouds with a constant geometrical depth, composed of ice crystals with different shapes (hexagonal columns, bullets, bullet-rosettes), sizes and various concentrations. We considered ice particles randomly oriented in space (3D case) and their scattering phase functions were calculated by a ray-tracing method. We calculated radiative fluxes for cirrus layers for different microphysical characteristics by using a discrete-ordinate radiative code. Results showed that the foremost effect of the ice-crystal shape on radiative properties of cirrus clouds was that on the optical thickness, while the variation of the scattering phase function with the ice shape remained less than 3% for our computations. The ice-water content may be a better choice to parameterize the optical properties of cirrus, but the shape effect must be included.  相似文献   

17.
Time–frequency characterization is useful in understanding the nonlinear and non-stationary signals of the hydro-climatic time series. The traditional Fourier transform, and wavelet transform approaches have certain limitations in analyzing non-linear and non-stationary hydro-climatic series. This paper presents an effective approach based on the Hilbert–Huang transform to investigate time–frequency characteristics, and the changing patterns of sub-divisional rainfall series in India, and explored the possible association of monsoon seasonal rainfall with different global climate oscillations. The proposed approach integrates the complete ensemble empirical mode decomposition with adaptive noise algorithm and normalized Hilbert transform method for analyzing the spectral characteristics of two principal seasonal rainfall series over four meteorological subdivisions namely Assam-Meghalaya, Kerala, Orissa and Telangana subdivisions in India. The Hilbert spectral analysis revealed the dynamic nature of dominant time scales for two principal seasonal rainfall time series. From the trend analysis of instantaneous amplitudes of multiscale components called intrinsic mode functions (IMFs), it is found that both intra and inter decadal modes are responsible for the changes in seasonal rainfall series of different subdivisions and significant changes are noticed in the amplitudes of inter decadal modes of two seasonal rainfalls in the four subdivisions since 1970s. Further, the study investigated the links between monsoon rainfall with the global climate oscillations such as Quasi Bienniel Oscillation (QBO), El Nino Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multidecadal Oscillation (AMO) etc. The study noticed that the multiscale components of rainfall series IMF1, IMF2, IMF3, IMF4 and IMF5 have similar periodic structure of QBO, ENSO, SN, tidal forcing and AMO respectively. As per the seasonal rainfall patterns is concerned, the results of the study indicated that for Assam-Meghalaya subdivision, there is a likelihood of extreme rare events at ~0.2 cycles per year, and both monsoon and pre-monsoon rainfall series have decreasing trends; for Kerala subdivision, extreme events can be expected during monsoon season with shorter periodicity (~2.5 years), and monsoon rainfall has statistically significant decreasing trend and post-monsoon rainfall has a statistically significant increasing trend; and for Orissa subdivision, there are chances of extremes rainfall events in monsoon season and a relatively stable rainfall pattern during post-monsoon period, but both monsoon and post-monsoon rainfall series showed an overall decreasing trend; for Telangana subdivision, there is a likelihood of extreme events during monsoon season with a periodicity of ~4 years, but both monsoon and post-monsoon rainfall series showed increasing trends. The results of correlation analysis of IMF components of monsoon rainfall and five climate indices indicated that the association is expressed well only for low frequency modes with similar evolution of trend components.  相似文献   

18.
全球强震活动性的某些统计特征   总被引:2,自引:1,他引:2       下载免费PDF全文
傅征祥 《地震学报》1986,8(2):137-145
根据阿部胜征新近研究和发表的均匀化全球大地震目录(1897——1980),获得如下几点关于全球强震活动性统计特征的初步认识:(1)本世纪六十年代中期之后,全球活动处于相对平静的阶段;(2)在全球活动高潮时段中b值偏低,大陆地震区的b值偏低;(3)据聚类分析方法研究序列的结果,全球不同的地震区内,存在几十年尺度的强震活动高潮幕和平静幕交替出现的现象;(4)北半球大陆浅源强震活动的空间分布和地球自转速率的变化特征有关。上述特征对估计全球和不同地震区的地震活动趋势可能有参考意义。   相似文献   

19.
青藏高原上分布着大量的大陆性冰川,其对区域及全球气候变化响应极其敏感.工业革命以来,随着全球升温速率加快(特别是北半球),青藏高原部分地区的冰川在近百年显著退缩.冰前湖沉积物是最直接的冰川变化记录载体之一,但其沉积速率如何响应冰川及气候变化,能否反演冰川进退过程却知之甚少.本文依据~(210)Pb和~(137)Cs限定藏南冰前湖枪勇错QY5沉积岩芯的年龄,计算出不同深度沉积物的沉积速率,且与前人(QY-3)的沉积速率进行对比,揭示了近百年来枪勇错流域冰川变化历史及其与气温之间的关系.结果表明,枪勇错QY5近百年来的平均沉积速率为0.21 cm/a,比湖心(QY-3)快2倍左右,但两者的变化基本同步,高沉积速率对应温度上升期,是冰川退缩的直接响应:(1)1900—1960年,枪勇错沉积速率整体增加且变幅较大,与1890—1950年之间西藏温度波动式升高相对应,反映枪勇冰川总体处于退缩状态;(2)1960—1985年,沉积速率低且变幅较小,同期气温下降,枪勇冰川退缩程度相对较低且保持平稳;(3)1985年以来,枪勇错沉积速率呈上升趋势,是全球增暖下冰川显著退缩的直接响应.在短时间尺度内冰前湖沉积速率所揭示的枪勇冰川变化主要受控于温度,降水量对冰川变化的影响较小,但冰川对温度变化的响应滞后5~10 a.由于全球变暖和冰川对温度响应的滞后,在未来几十年高原冰川的融化速率可能会加快,亚洲水塔将面临着新的挑战.  相似文献   

20.
Methodology for credibility assessment of historical global LUCC datasets   总被引:1,自引:0,他引:1  
Fang  Xiuqi  Zhao  Wanyi  Zhang  Chengpeng  Zhang  Diyang  Wei  Xueqiong  Qiu  Weili  Ye  Yu 《中国科学:地球科学(英文版)》2020,63(7):1013-1025
Land use-induced land cover change(LUCC) is an important anthropogenic driving force of global change that has influenced, and is still influencing, many aspects of regional and global environments. Accurate historical global land use/cover datasets are essential for a better understanding of the impacts of LUCC on global change. However, there are not only evident inconsistencies in current historical global land use/cover datasets, but inaccuracies in the data in these global dataset revealed by historical record-based reconstructed regional data throughout the world. A focus in historical LUCC and global change research relates to how the accuracy of historical global land cover datasets can be improved. A methodology for assessing the credibility of existing historical global land cover datasets that addresses temporal as well as spatial changes in the amount and distribution of land cover is therefore needed. Theoretically, the credibility of a global land cover dataset could be assessed by comparing similarities or differences in the data according to actual land cover data(the "true value"). However, it is extremely difficult to obtain historical evidence for assessing the credibility of historical global land cover datasets, which cannot be verified through field sampling like contemporary global land cover datasets. We proposed a methodological framework for assessing the credibility of global land cover datasets. Considering the types and characteristics of the available evidence used for assessments,we outlined four methodological approaches:(1) accuracy assessment based on regional quantitative reconstructed land cover data,(2) rationality assessment based on regional historical facts,(3) rationality assessment based on expertise, and(4) likelihood assessment based on the consistency of multiple datasets. These methods were illustrated through five case studies of credibility assessments of historical cropland cover data. This framework can also be applied in assessments of other land cover types, such as forest and grassland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号