首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
A physically-based distributed erosion model (MEFIDIS) was applied to evaluate the consequences of storm movement on runoff and erosion from the Alenquer basin in Portugal. Controlled soil flume laboratory experiments were also used to test the model. Nine synthetic circular storms were used, combining three storm diameters (0.5, 1 and 2 times the Alenquer basin’s axial length) with three speeds of storm movement (0.5, 1 and 2 m/s); storm intensities were synthesized in order to maintain a constant rainfall depth of 50 mm. The model was applied to storms moving downstream as well as upstream along the basin’s axis. In all tests, downstream-moving storms caused significantly higher peak runoff (56.5%) and net erosion (9.1%) than did upstream-moving storms. The consequences for peak runoff were amplified as the storm intensity increased. The hydrograph shapes were also different: for downstream-moving storms, runoff started later and the rising limb was steeper, whereas for upstream moving storms, runoff started early and the rising limb was less steep. Both laboratory and model simulations on the Alenquer basin showed that the direction of storm movement, especially in case of extreme rainfall events, significantly affected runoff and soil loss.  相似文献   

2.
Physical soil crusts likely have significant effects on infiltration and soil erosion, however, little is known on whether the effects of the crusts change during a rainfall event. Further, there is a lack of discussions on the differences among the crusting effects of different soil types. The objectives of this study are as follows: (i) to study the effects of soil crusts on infiltration, runoff, and splash erosion using three typical soils in China, (ii) to distinguish the different effects on hydrology and erosion of the three soils and discuss the primary reasons for these differences, and (iii) to understand the variations in real soil shear strength of the three soils during rainfall events and mathematically model the effects of the crusts on soil erosion. This study showed that the soil crusts delayed the onset of infiltration by 5 to 15 min and reduced the total amount of infiltration by 42.9 to 53.4% during rainfall events. For a purple soil and a loess soil, the initial crust increased the runoff by 2.8% and 3.4%, respectively, and reduced the splash erosion by 3.1% and 8.9%, respectively. For a black soil, the soil crust increased the runoff by 42.9% and unexpectedly increased the splash erosion by 95.2%. In general, the effects of crusts on the purple and loess soils were similar and negligible, but the effects were significant for the black soil. The soil shear strength decreased dynamically and gradually during the rainfall events, and the values of crusted soils were higher than those of incrusted soils, especially during the early stage of the rainfall. Mathematical models were developed to describe the effects of soil crusts on the splash erosion for the three soils as follows: purple soil, Fc= 0.002t- 0.384 ; black soil, Fc. =-0.022t + 3.060 ; and loess soil, Fc = 0.233 In t- 1.239 . Combined with the equation Rc= Fc (Ruc - 1), the splash erosion of the crusted soil can be predicted over time.  相似文献   

3.
《水文科学杂志》2013,58(2):387-400
Abstract

The effects of spatial variation of the saturated hydraulic conductivity (K s ) of the soil on the variation of overland flow were tested by analysing 2000 synthetic rainfall—runoff events, all generated from real, observed rainfall events but with runoff modelled by a two-dimensional distributed model using different spatially variable K s fields in a small (12 ha) agricultural catchment. The purpose is to determine the influence of spatial variation in K s on runoff generation. The statistical measures used to describe the variation in the generated K s were its coefficient of variation and correlation length. Both of these had two levels of typical values obtained from field measurements in other studies. The storms were analysed at a general event level, first using simple graphical and statistical methods and then using analysis of variance (ANOVA). The observed scale of the spatial variation of K s does cause statistically significant variation in overland flow. The graphical analysis showed that the first flow peak in a multi-event storm had the largest variation and that differences were greater in the rising part of the hydrograph than in its recession. The greatest variation in overland flow was produced by the combination of the greater coefficient of variation and the longer correlation lengths. The smallest variation in overland flow was produced by the combination of the smaller coefficient of variation and the shorter correlation lengths. ANOVA showed that the coefficient of variation and correlation length alone did not explain all the variation of the total flow. ANOVA was not very useful due to the many restrictive assumptions that were not satisfied by the nature of the data and therefore analysis methods with less restrictive assumptions need to be tested.  相似文献   

4.
In wind‐driven rains, wind velocity and direction are expected to affect not only energy input of rains but also shallow ?ow hydraulics by changing roughness induced by raindrop impacts with an angle on ?ow and the unidirectional splashes in the wind direction. A wind‐tunnel study under wind‐driven rains was conducted to determine the effects of horizontal wind velocity and direction on sediment transport by the raindrop‐impacted shallow ?ow. Windless rains and the rains driven by horizontal wind velocities of 6 m s?1, 10 m s?1, and 14 m s?1 were applied to three agricultural soils packed into a 20 by 55 cm soil pan placed on both windward and leeward slopes of 7 per cent, 15 per cent, and 20 per cent. During each rainfall application, sediment and runoff samples were collected at 5‐min intervals at the bottom edge of the soil pan with wide‐mouth bottles and were determined gravimetrically. Based on the interrill erosion mechanics, kinetic energy ?ux (Ern) as a rainfall parameter and product of unit discharge and slope in the form of qbSco as a ?ow parameter were used to explain the interactions between impact and ?ow parameters and sediment transport (qs). The differential sediment transport rates occurred depending on the variation in raindrop trajectory and rain intensity with the wind velocity and direction. Flux of rain energy computed by combining the effects of wind on the velocity, frequency, and angle of raindrop impact reasonably explained the characteristics of wind‐driven rains and acceptably accounted for the differences in sediment delivery rates to the shallow ?ow transport (R2 ≥ 0·78). Further analysis of the Pearson correlation coef?cients between Ern and qSo and qs also showed that wind velocity and direction signi?cantly affected the hydraulics of the shallow ?ow. Ern had a smaller correlation coef?cient with the qs in windward slopes where not only reverse splashes but also reverse lateral raindrop stress with respect to the shallow ?ow direction occurred. However, Ern was as much effective as qSo in the sediment transport in the leeward slopes where advance splashes and advance lateral raindrop stress on the ?ow occurred. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
This paper quantifies the runoff and sediment yield for four different land covers in a semiarid region of Brazil. The WESP model, a distributed, event-oriented runoff-erosion model, was applied and its physical parameters, Ns and KR, were adjusted based on observed runoff and sediment yield data using simulated rainfall with an average intensity of 53 mm h-1. The sediment yield obtained was 53.02 kg ha-1 (caatinga vegetation), 231.96 kg ha-1 (bare soil), 309.75 kg ha-1 (beans), and 847.38 kg ha-1(corn). The results showed that caatinga cover yields the lowest erosion and runoff when compared to the other treatments. The results also show that the sediment yield and runoff values simulated with Ns, KI, and KR parameters were well calibrated, within acceptable deviations. The caatinga vegetation was more effective in protecting the soil, when compared to the other types of coverage. The beans and corn covers had the highest values of runoff and sediment yield, even higher than those observed for bare soil.  相似文献   

7.
Effects of rainfall patterns on runoff and rainfall-induced erosion   总被引:3,自引:0,他引:3  
Rainfall-induced erosion involves the detachment of soil particles by raindrop impact and their transport by the combined action of the shallow surface runoff and raindrop impact.Although temporal variation in rainfall intensity(pattern)during natural rainstorms is a common phenomenon,the available information is inadequate to understand its effects on runoff and rainfall-induced erosion processes.To address this issue,four simulated rainfall patterns(constant,increasing,decreasing,and increasing-decreasing)with the same total kinetic energy were designed.Two soil types(sandy and sandy loam)were subjected to simulated rainfall using 15 cm×30 cm long detachment trays under infiltration conditions.For each simulation,runoff and sediment concentration were sampled at regular intervals.No obvious difference was observed in runoff across the two soil types,but there were significant differences in soil losses among the different rainfall patterns and stages.For varying-intensity rainfall patterns,the dominant sediment transport mechanism was not only influenced by raindrop detachment but also was affected by raindrop-induced shallow flow transport.Moreover,the efficiency of equations that predict the interrill erosion rate increased when the integrated raindrop impact and surface runoff rate were applied.Although the processes of interrill erosion are complex,the findings in this study may provide useful insight for developing models that predict the effects of rainfall pattern on runoff and erosion.  相似文献   

8.
Abstract

Soil water content (θ) and saturated hydraulic conductivity (Ks) vary in space. The objective of this study was to examine the effects of initial soil water content (θi) and Ks variability on runoff simulations using the LImburg Soil Erosion Model (LISEM) in a small watershed in the Chinese Loess Plateau, based on model parameters derived from intensive measurements. The results showed that the total discharge (TD) and peak discharge (PD) were underestimated when the variability of θi and Ks was partially considered or completely ignored compared with those when the variability was fully considered. Time to peak (TP) was less affected by the spatial variability compared to TD and PD. Except for TP in some cases, significant differences were found in all hydrological variables (TD, PD and TP) between the cases in which spatial variability of θi or Ks was fully considered and those in which spatial variability was partially considered or completely ignored. Furthermore, runoff simulations were affected more strongly by Ks variability than by θi variability. The degree of spatial variability influences on runoff simulations was related to the rainfall pattern and θi. Greater rainfall depth and instantaneous rainfall intensity corresponded to a smaller influence of the spatial variability. Stronger effects of the θi variability on runoff simulation were found in wetter soils, while stronger effects of the Ks variability were found in drier soils. For accurate runoff simulation, the θi variability can be completely ignored in cases of a 1-h duration storm with a return period greater than 10 years, while Ks variability should be fully considered even in the case of a 1-h duration storm with a return period of 20 years.
Editor D. Koutsoyiannis; Associate editor A. Fiori  相似文献   

9.
《Journal of Hydrology》2006,316(1-4):184-194
A semi-analytical model for the estimate of expected areal-average infiltration rate at hillslope scale is presented. It accounts for spatial heterogeneity of the saturated hydraulic conductivity, Ks, and rainfall rate, r. The Ks field is characterized by a lognormal probability density function while the rainfall rate r is represented by a uniform distribution between two extreme values. The model formulation relies upon the use of cumulative infiltration as the independent variable which is then expressed as a function of an expected time for use in practical applications. The solution is applicable for those ranges of r and Ks that allow for neglecting the infiltration of surface water running downslope into pervious soils (run-on process). The model was tested by comparisons with Monte Carlo simulations carried out for a variety of coefficients of variation of r and Ks over a clay loam soil and a sandy loam soil. The model was found to be very reliable both with coupled spatial variability of r and Ks and when only one variable is characterized by spatial heterogeneity while the other is uniform.  相似文献   

10.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   

11.
The Simulator of Artificial RaInfall (SARI) rainfall simulator (RS) is a newly designed, constructed and calibrated, portable, two-nozzle RS with low water consumption, accurate measurement, easy management and low cost. The raindrop size distribution and velocity and mean rainfall intensity were measured. The best rainfall spatial distribution was achieved with nozzles separated by 50, 60 and 70 cm, and with oscillation angles of 30, 45 and 60°, at a pressure of 60 kPa. The uniformity coefficient varied from 57 to 61% and rainfall intensity from 48 to 101 mm h?1. The raindrop diameter varied from 0.2 to 9.9 mm. The raindrop velocity at the optimum pressure of 60 kPa, which was measured with high-speed photography, ranged from 1.1 to 7.1 m s?1. Comparison with other RSs shows that the SARI simulator is a suitable apparatus to research soil erosion and runoff generation under laboratory and field conditions.  相似文献   

12.
The saturated hydraulic conductivity, Ks, is a soil property that has a key role in the partitioning of rainfall into surface runoff and infiltration. The commonly used instruments and methods for in situ measurements of Ks have frequently provided conflicting results. Comparison of Ks estimates obtained by three classical devices—namely, the double ring infiltrometer (DRI), the Guelph version of the constant‐head well permeameter (GUELPH‐CHP) and the CSIRO version of the tension permeameter (CSIRO‐TP) is presented. A distinguishing feature in this study is the use of steady deep flow rates, obtained from controlled rainfall–runoff experiments, as benchmark values of Ks at local and field‐plot scales, thereby enabling an assessment of these methods in reliably reproducing repeatable values and in their capability of determining plot‐scale variation of Ks. We find that the DRI grossly overestimates Ks, the GUELPH‐CHP gives conflicting estimates of Ks with substantial overestimation in laboratory experiments and underestimation at the plot scale, whereas the CSIRO‐TP yields average Ks values with significant errors of 24% in the plot scale experiment and 66% in laboratory experiments. Although the DRI would likely yield a better estimate of the nature of variability than the GUELPH‐CHP and CSIRO‐TP, a separate calibration may be warranted to correct for the overestimation of Ks values. The reasons for such discrepancies within and between the measurement methods are not yet fully understood and serve as motivation for future work to better characterize the uncertainty associated with individual measurements of Ks using these methods and the characterization of field scale variability from multiple local measurements.  相似文献   

13.
The vector physics of wind‐driven rain (WDR) differs from that of wind‐free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the interrill component of the WEPP model for WDR events. The interrill delivery rates were measured in the wind tunnel facility of the International Center for Eremology (ICE), Ghent University, Belgium with an experimental setup to study different raindrop impact velocity vectors. Synchronized wind and rain simulations with wind velocities of 6, 10 and 14 m s–1 were applied to a test surface placed on windward and leeward slopes of 7, 15 and 20%. Since both rainfall intensity and raindrop impact velocity varied greatly depending on differences in the horizontal wind velocity under WDRs, the resultant kinetic energy flux (KEr, in J m–2 s–1) was initially used in place of the WEPP model intensity term in order to incorporate the effect of wind on impact velocity and frequency of raindrops. However, our results showed only minor improvement in the model predictions. For all research data, the model Coefficients of Determination (r2) were 0·63 and 0·71, when using the WEPP and the KEr approaches, respectively. Alternately, integrating the angle of rain incidence into the model by vectorally partitioning normal kinetic energy flux (KErn, in J m–2 s–1) from the KEr greatly improved the model's ability to estimate the interrill sediment delivery rates (r2 = 0·91). This finding suggested that along with the fall trajectory of wind‐driven raindrops with a given frequency, raindrop velocity and direction at the point of impact onto the soil surface provided sufficient physical information to improve WEPP sediment delivery rate predictions under WDR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The occurrence of water ponding on soil surfaces during and after heavy rainfall produces surface run‐off or surface water accumulation in low‐lying areas, which might reduce the water supply to soils and result in a reduction of the soil water that plants can use, especially in arid climates. On Mongolian rangeland, we observed ponded water on the surface of a specific soil condition subjected to a heavy rainfall of 30 mm/hr. By contrast, ponded water was not observed for the same type of soil where livestock grazing had been removed for 6–8 years via a fence or for nearby soil containing less clay. We measured the infiltration rate (the saturated hydraulic conductivity of the surface soil, Ks) of the three sites by applying ponded water on the soil surface (an intake rate test). The results showed that Ks in the rangeland was lower than the rainfall intensity in the site where water ponded on the soil surface; however, Ks of the soil inside of the fence has recovered to 3 times that of the soil outside of the fence to exceed the rainfall intensity. Heavy rainfall that exceeds the infiltration rate occurs several times a year at the livestock grazing site where we observed ponded water. Slight water repellency of the soil reduces rain infiltration to increase the possibility of surface ponding for the soil.  相似文献   

15.
16.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
R. M. Bajracharya  R. Lal 《水文研究》1998,12(12):1927-1938
Sealing and crusting of soil surfaces have dramatic effects on water infiltration into and runoff from soils, thereby greatly influencing erosion processes. This study focused on the effect of the initial stage of crusting on inter-rill erosion processes for a crust-prone Alfisol sampled from south-central India. Soil aggregates ranging from 2·4 to 8 mm collected from ploughed (PL) and naturally vegetated (NV) treatments were subjected to rainfall simulation under laboratory conditions. Runoff from PL soil aggregates was 2–2·5 times higher, while percolation was 20–100% lower, than for NV aggregates. Soil wash and splash losses were 0·5–3 times greater for PL than for NV soil. Runoff and inter-rill erosion were significantly higher during the wet simulation run compared with the dry run. The results indicated that NV soil aggregates were more resistant to breakdown from raindrop impact and slaking, and subject to less rapid sealing, than PL soil. Total soil loss was influenced most by initial aggregate stability and the extent of seal development. Splash and wash losses of soil both increased as a result of surface sealing regardless of soil condition for short (30–60 min) rainfall durations. High drying rates resulted in the highest crust bulk densities. Increased crust strength for PL soil compared with NV soil reflected the greater susceptibility of cultivated soil to surface sealing and crusting. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Soil erosion and nutrient losses with surface runoff in the loess plateau in China cause severe soil quality degradation and water pollution. It is driven by both rainfall impact and runoff flow that usually take place simultaneously during a rainfall event. However, the interactive effect of these two processes on soil erosion has received limited attention. The objectives of this study were to better understand the mechanism of soil erosion, solute transport in runoff, and hydraulic characteristics of flow under the simultaneous influence of rainfall and shallow clear‐water flow scouring. Laboratory flume experiments with three rainfall intensities (0, 60, and 120 mm h−1) and four scouring inflow rates (10, 20, 30, and 40 l min−1) were conducted to evaluate their interactive effect on runoff. Results indicate that both rainfall intensity and scouring inflow rate play important roles on runoff formation, soil erosion, and solute transport in the surface runoff. A rainfall splash and water scouring interactive effect on the transport of sediment and solute in runoff were observed at the rainfall intensity of 60 mm h−1 and scouring inflow rates of 20 l min−1. Cumulative sediment mass loss (Ms) was found to be a linear function of cumulative runoff volume (Wr) for each treatment. Solute transport was also affected by both rainfall intensity and scouring inflow rate, and the decrease in bromide concentration in the runoff with time fitted to a power function well. Reynolds number (Re) was a key hydraulic parameter to determine erodability on loess slopes. The Darcy–Weisbach friction coefficients (f) decreased with the Reynolds numbers (Re), and the average soil and water loss rate (Ml) increased with the Reynolds numbers (Re) on loess slope for both scenarios with or without rainfall impact. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Empirical prediction of soil erosion has both scientific and practical importance. This investigation tested USLE and USLE‐based procedures to predict bare plot soil loss at the Sparacia area, in Sicily. Event soil loss per unit area, Ae, did not vary appreciably with plot length, λ, because the decrease in runoff with λ was offset by an increase in sediment concentration. Slope steepness, s, had a positive effective on Ae, and this result was associated with a runoff coefficient that did not vary appreciably with s and a sediment concentration generally increasing with s. Plot steepness did not have a statistically detectable effect on the calculations of the soil erodibility factor of both the USLE, K, and the USLE‐M, KUM, models, but a soil‐independent relationship between KUM and K was not found. The erosivity index of the USLE‐MM model performed better than the erosivity index of the Central and Southern Italy model. In conclusion, the importance of an approach allowing soil loss predictions that do not necessarily increase with λ was confirmed together with the usability of already established and largely applied relationships to predict steepness effects. Soil erodibility has to be determined with reference to the specific mathematical scheme and conversion between different schemes seems to need taking into account the soil characteristics. The USLE‐MM shows promise for further developments. The evolutionary concept applied in the development of the USLE should probably be rediscovered to improve development of soil erosion prediction tools. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号