首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Operational flood prediction and flood risk assessment have become important components of flood management. One main aspect is the reliability assessment of the flood defence line during a flood event. This is generally performed by a comparison of the water level in the river to the crest height of the dikes whilst taking only hydraulic and geometric aspects into account. Additional information about material zones and material parameters are often available. However, these data are not in an appropriate shape when deriving the reliability of the flood defence line. This paper outlines how the fragility curve of a dike section is used to appropriately integrate geostatic and geohydraulic dike characteristics into operational flood management systems. Fragility curves are the result of a model-based reliability analysis and they summarise the dike performance depending on the water level. Failure modes such as piping or slope failure are included. In a case study, fragility curves for dike sections along the River Emscher (Germany) are determined. Their practical implementation in an operational flood management system shows an improvement in the operational reliability assessment due to the additional information taken into account. The use of fragility curves also supports the decision-making processes when emergency flood protection measures are required.  相似文献   

2.
In the Netherlands the current dike design policy is to design flood defence structures corresponding to an agreed flooding probability with an extra safety board of at least 0.5 m. For river dikes a return period of 1,250 years is used to determine the design water levels. A problem with this strategy is that it builds on assumptions with regard to the intrinsically uncertain probability distributions for the peak discharges. The uncertainty is considerable and due to (1) the measuring records that are limited to about 100 years and (2) the changing natural variability as a result of climate change. Although the probability distributions are regularly updated based on new discharge data the nature of the statistics is such that a change in the natural variability of the peak discharge affects the probability distribution only long after the actual change has happened. Here we compare the performance of the probabilistic dike design strategy with the older strategy, referred to as the ‘self-learning dike’. The basic principle of the latter strategy is that the dike height is kept at a level equal to the highest recorded water level plus a certain safety margin. The two flood prevention strategies are compared on the basis of the flooding safety over a 100-year period. The Rhine gauge station at Lobith serves as case study. The results indicate that the self-learning dike performs better than the probabilistic design in terms of safety and costs, both under current and climate change conditions.  相似文献   

3.
Shanghai is physically and socio-economically vulnerable to accelerated sea level rise because of its low elevation, flat topography, highly developed economy and highly-dense population. In this paper, two scenarios of sea level rise and storm surge flooding along the Shanghai coast are presented by forecasting 24 (year 2030) and 44 (year 2050) years into the future and are applied to a digital elevation model to illustrate the extent to which coastal areas are susceptible to levee breach and overtopping using previously developed inflow calculating and flood routing models. Further, the socio-economic impacts are examined by combining the inundation areas with land use and land cover change simulated using GeoCA-Urban software package. This analysis shows that levee breach inundation mainly occurs in the coastal zones and minimally intrudes inland with the conservative protection of dike systems designed. However, storm surge flooding at the possible maximum tide level could cause nearly total inundation of the landscape, and put approximately 24 million people in Shanghai under direct risk resulting from consequences of flooding (e.g. contamination of potable water supplies, failure of septic systems, etc.).  相似文献   

4.
River flooding is a problem of international interest. In the past few years many countries suffered from severe floods. A large part of the Netherlands is below sea level and river levels. The Dutch flood defences along the river Rhine are designed for water levels with a probability of exceedance of 1/1250 per year. These water levels are computed with a hydrodynamic model using a deterministic bed level and a deterministic design discharge. Traditionally, the safety against flooding in the Netherlands is obtained by building and reinforcing dikes. Recently, a new policy was proposed to cope with increasing design discharges in the Rhine and Meuse rivers. This policy is known as the Room for the River (RfR) policy, in which a reduction of flood levels is achieved by measures creating space for the river, such as dike replacement, side channels and floodplain lowering. As compared with dike reinforcement, these measures may have a stronger impact on flow and sediment transport fields, probably leading to stronger morphological effects. As a result of the latter the flood conveyance capacity may decrease over time. An a priori judgement of safety against flooding on the basis of an increased conveyance capacity of the river can be quite misleading. Therefore, the determination of design water levels using a fixed-bed hydrodynamic model may not be justified and the use of a mobile-bed approach may be more appropriate. This problem is addressed in this paper, using a case study of the river Waal (one of the Rhine branches in the Netherlands). The morphological response of the river Waal to a flood protection measure (floodplain lowering in combination with summer levee removal) is analysed. The effect of this measure is subject to various sources of uncertainty. Monte Carlo simulations are applied to calculate the impact of uncertainties in the river discharge on the bed levels. The impact of the “uncertain” morphological response on design flood level predictions is analysed for three phenomena, viz. the impact of the spatial morphological variation over years, the impact of the seasonal morphological variation and the impact of the morphological variability around bifurcation points. The impact of seasonal morphological variations turns out to be negligible, but the other two phenomena appear to have each an appreciable impact (order of magnitude 0.05–0.1 m) on the computed design water levels. We have to note however, that other sources of uncertainty (e.g. uncertainty in hydraulic roughness predictor), which may be of influence, are not taken into consideration. In fact, the present investigation is limited to the sensitivity of the design water levels to uncertainties in the predicted bed level.  相似文献   

5.
Risk, including flood risk, can be defined as ??the combination of the probability of an event and its consequences??. Assessing and managing the risk from flooding should explicitly include the estimation of impacts to people. Extensive research is currently ongoing looking at both quantitative and qualitative approaches for assessing flood impacts on people. Although there is some literature available on such approaches, examples of methodological and routinely applications of these methodologies as part of flood risk assessments are rare. This paper focuses on quantitative approaches for estimating impacts of flooding to people, notably on methods for assessing fatality numbers associated with flooding. Three methods for assessing losses of life are discussed in detail. The methods discussed here constitute the forefront of research in Canada, UK and The Netherlands. These methods provide an assessment of the physical consequences of flooding on people and can be used to introduce the impacts to people as quantitative metric for the assessment of flood risk. In this paper, the three methodologies are discussed and applied in a UK case study reproducing the 1953 East Coast flood event. This study aims to provide a comprehensive comparison on both the reliability and the applicability of the methods. We analyse possible added values on using of these methods in systematic analyses, aiming to provide guidelines for applying these methods for flood fatality risk assessment.  相似文献   

6.
Polders in the Netherlands are protected from flooding by flood defence systems along main water bodies such as rivers, lakes or the sea. Inside polders, canal levees provide protection from smaller water bodies. Canal levees are mainly earthen levees along drainage canals that drain excess water from polders to the main water bodies. The water levels in these canals are regulated. During the last decades, probabilistic approaches have been developed to quantify the probability of failure of flood defences along the main water bodies. This paper proposes several extensions to this method to quantify the probability of failure of canal levees. These extensions include a method to account for (i) water-level regulation in canals, (ii) the effect of maintenance dredging on the geohydrological response of the canal levee and (iii) survival of loads in the past. The results of a case study demonstrate that the proposed approach is capable of quantifying the probability of failure of canal levees and is useful for exploring the relative benefit of risk mitigating measures for canal levees.  相似文献   

7.
A Probabilistic Modelling System for Assessing Flood Risks   总被引:4,自引:2,他引:4  
In order to be economically viable, flood disaster mitigation should be based on a comprehensive assessment of the flood risk. This requires the estimation of the flood hazard (i.e. runoff and associated probability) and the consequences of flooding (i.e. property damage, damage to persons, etc.). Within the “German Research Network Natural Disasters” project, the working group on “Flood Risk Analysis” investigated the complete flood disaster chain from the triggering event down to its various consequences. The working group developed complex, spatially distributed models representing the relevant meteorological, hydrological, hydraulic, geo-technical, and socio-economic processes. In order to assess flood risk these complex deterministic models were complemented by a simple probabilistic model. The latter model consists of modules each representing one process of the flood disaster chain. Each module is a simple parameterisation of the corresponding more complex model. This ensures that the two approaches (simple probabilistic and complex deterministic) are compatible at all steps of the flood disaster chain. The simple stochastic approach allows a large number of simulation runs in a Monte Carlo framework thus providing the basis for a probabilistic risk assessment. Using the proposed model, the flood risk including an estimation of the flood damage was quantified for an example area at the river Rhine. Additionally, the important influence of upstream levee breaches on the flood risk at the lower reaches was assessed. The proposed model concept is useful for the integrated assessment of flood risks in flood prone areas, for cost-benefit assessment and risk-based design of flood protection measures and as a decision support tool for flood management.  相似文献   

8.
A computational model system is proposed for the prediction of sea dike breaching initiated from the seaward side by breaking wave impact with the focus on the application of the model system for the estimation failure probability of the defence structure. The described model system is built using a number of existing models for the calculation of grass, clay, and sand erosion. The parameters identified as those having the most significant influence on the estimation of the failure have been described stochastically. Monte Carlo simulations to account for uncertainties of the relevant input parameters and the model itself have been performed and the probabilities of the breach initiation and of the full dike breaching have been calculated. This will form the basis to assess the coastal flood risk due to dike breaching.  相似文献   

9.
当前洪水风险分析按照典型设计标准洪水进行计算的模式难以满足实际防洪管理需要,为了提高洪水风险分析的实时性以及适应洪水演进的动态性,设计了动态实时洪水风险分析框架。在本框架中,先采用一维和二维动态耦合水动力学数值方法耦合溃堤模型,然后在樵桑联围防洪保护区建立洪水演进模拟模型,通过灵活处理模型计算边界条件以及动态设置溃堤功能,计算不同设计标准洪水发生时,堤防出现单一溃口或者组合溃口后保护区内洪水演进过程。按照上述框架开发了樵桑联围动态实时洪水风险图编制与管理应用系统,并利用历史洪水资料开展模型验证,验证结果表明,2008-06洪水马口站、三水站、大熬站、甘竹(一)站的实测最高水位和模型计算最高水位的绝对误差分别为-0.10、0.10、0.09、0.04 m,均满足洪水模拟精度要求。利用模型计算了西江发生200年一遇的洪水情况下,江根堤防出现溃口后的洪水流量及溃口内外洪水水位变化过程,模拟溃口宽度168 m,最大溃口洪水流量达到5 190 m3,分析了堤防溃决后3、6和24 h洪水漫延导致村落淹没情况,结果表明其满足合理性分析。  相似文献   

10.
ABSTRACT

Hazard analysis is a crucial step in flood risk management, and for large rivers, the effects of breaches need to be taken into account. Hazard analyses that incorporate this overall “system behaviour” have become increasingly popular in flood risk assessment. Methods to perform such analyses often focus on high water levels as a trigger for dike breaching. However, the duration of high water levels is known to be another important failure criterion. This study aims to investigate the effect of including this duration dependency in system behaviour analyses, using a computational framework in which two dike breach triggering methods are compared. The first triggers dike breaches based on water levels, and the second one based on both water-level and duration. The comparison is made for the Dutch Rhine system, where the dike failure probabilities are assumed to conform to the new Dutch standards of protection. The results show that including the duration as a breach triggering variable has an effect on the hydraulic loads and overall behaviour in the system, therefore influencing the risk. Although further work is required to fully understand the potential impact, the study suggests that including this duration dependency is important for future hazard risk analyses.  相似文献   

11.
This article deals with methods for the estimation of loss of life due to flooding. These methods can be used to assess the flood risks and to identify mitigation strategies. The first part of this article contains a comprehensive review of existing literature. Methods have been developed for different types of floods in different regions. In general these methods relate the loss of life in the flooded area to the flood characteristics and the possibilities for evacuation and shelter. An evaluation showed that many of the existing methods do not take into account all of the most relevant determinants of loss of life and that they are often to a limited extent based on empirical data of historical flood events. In the second part of the article, a new method is proposed for the estimation of loss of life caused by the flooding of low-lying areas protected by flood defences. An estimate of the loss of life due to a flood event can be given based on: (1) information regarding the flood characteristics, (2) an analysis of the exposed population and evacuation, and (3) an estimate of the mortality amongst the exposed population. By analysing empirical information from historical floods, new mortality functions have been developed. These relate the mortality amongst the exposed population to the flood characteristics. Comparison of the outcomes of the proposed method with information from historical flood events shows that it gives an accurate approximation of the number of observed fatalities during these events. The method is applied to assess the consequences for a large-scale flooding of the area of South Holland, in the Netherlands. It is estimated that the analysed coastal flood scenario can lead to approximately 3,200 fatalities in this area.
A. C. W. M. VrouwenvelderEmail:
  相似文献   

12.
Hydrological parameters are among the widely used parameters in assessing flood risk. On the other hand, anticipated flood damages, in case of flooding, are estimated with the help of expected losses in areas nearer to the watercourse. The major source of almost every-year flooding in Pakistan is the Indus River system that comprises the major rivers of Pakistan. We first use observed data to construct simulated data models based on various probability distributions namely normal, lognormal, Weibull, largest extreme value, gamma-3, and log-Pearson type-3 distributions and thereby compute probable maximum flood. Secondly, we perform log-Pearson type-3 analysis with and without historic adjustment on the observed data series of 17 years to forecast floods with return periods T of 2, 5, 10, 25, 50, 100, and 200 years. We also categorize the river structures based on the risk of flooding. Lastly, we estimate risk of flood damages in terms of expected losses based on observed data. The present study reveals that the log-Pearson type-3 distribution is relatively better for estimating probable maximum flood. We use exceedence probability to assess the risk of flooding in the various structures of the said rivers. The analysis shows that flood damages in Pakistan may be reduced by increasing the design capacity of the structures and also by giving awareness to people about the flood-generating factors.  相似文献   

13.
Waste disposal sites are mostly located in lowland areas close to residential areas inducing a long-term risk of potential environmental contamination due to flooding. During recent flood events, these areas were reportedly exposed to inundations. This paper aims to develop a qualitative approach to assess flood risk associated with flood-prone waste disposals at the basis of Austrian case studies. Risk is investigated as a function of the probability of an event and the consequences of that event. The presented assessment approach is characterized as qualitative as consequences are expressed in risk categories but not in expected (monetary) losses. The probability of inundation, the hydrodynamic impacts on considered waste disposal sites and the expected consequences to the environment (potential emissions of hazardous substances) were linked. Derived risk categories from “minor risk” to “serious risk” were used to express flood risk to environmental goods like groundwater bodies, nature reserves and recreation areas. A screening of 1,064 waste disposals yielded roughly 30% of sites located within or close to flood risk zones. Three representative case study areas were selected and investigated in detail by applying 2D hydrodynamic models to calculate flow depths and shear stress and by developing emission scenarios. The hydrodynamic modelling covered three hydrologic scenarios with statistical recurrence intervals of 30, 100 and 300 years. Derived leaching scenarios ranged from minor emissions up to total erosion of the waste disposal site. Based on four parameters representing flood characteristics, the susceptibility to erosion (flow velocity and shear stress) and the estimated leaching behaviour, a flood risk evaluation matrix (FREM) was elaborated. The study outlines that in case of flooding the hazardous emissions could lead to partly tremendous impacts on environmental goods. Identified uncertainties associated with considered processes were considerably high. However, the developed qualitative approach provides a decision support aid to identify waste disposals with imminent risk for humans and the environment.  相似文献   

14.
对1998年长江中游特大洪灾分析表明:长江中上游植被破坏,中游湖泊萎缩,干堤防洪标准低,河道泄洪不畅,是洪灾形成的主要因素.三峡水库是长江中游防洪体系中的骨干工程,必须与其他工程相配合.长江中游防洪减灾工程应坚持:(1)与环境保护相结合的原则;(2)与农田水利基本建设相结合的原则;(3)"固、蓄、疏"并举,以"疏"为主的原则;(4)防洪与除渍相结合的原则;(5)统一管理、联合攻关、综合整治的原则与对策.建议除加固长江干堤外,重点建设两条分洪河道,建好3个梯级蓄洪区,有计划有步骤地实施开堤开垸放淤工程.  相似文献   

15.
Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process.  相似文献   

16.
Hydrodynamic flow modeling is carried out using a coupled 1D and 2D hydrodynamic flow model in northern India where an industrial plant is proposed. Two flooding scenarios, one considering the flooding source at regional/catchment level and another considering all flooding sources at local level have been simulated. For simulating flooding scenario due to flooding of the upstream catchment, the probable maximum flood (PMF) in the main river is routed and its flooding impact at the plant site is studied, while at the local level flooding, in addition to PMF in the main river, the probable maximum precipitation at the plant site and breaches in the canals near the plant site have been considered. The flood extent, depth, level, duration and maximum flow velocity have been computed. Three parameters namely the flood depth, cross product of flood depth and velocity and flood duration have been used for assessing the flood hazard, and a flood hazard classification scheme has been proposed. Flood hazard assessment for flooding due to upstream catchment and study on local scale facilitates determination of plinth level for the plant site and helps in identifying the flood protection measures.  相似文献   

17.
This paper presents a methodology for tsunami risk assessment, which was applied to a case study in Kamakura, Japan. This methodology was developed in order to evaluate the effectiveness of a risk-reducing system against such hazards, also aiming to demonstrate that a risk assessment is possible for these episodic events. The tsunami risk assessment follows these general steps: (1) determination of the probability of flooding, (2) calculation of flood scenarios, (3) assessment of the consequences and (4) integration into a risk number or graph. The probability of flooding was approximated based on the data provided by local institutes, and the flood scenarios were modeled in 1D using the Simulating WAves till SHore model. Results showed that a tsunami in Kamakura can result in thousands of casualties. Interventions such as improvements in evacuation systems, which would directly reduce the number of casualties, would have a large influence in risk reduction. Although this method has its limits and constraints, it illustrates the value it can add to existing tsunami risk management in Japan.  相似文献   

18.
The Subarnarekha River in east India experiences frequent high magnitude flooding in monsoon season.In this study, we present an in-depth analysis of flood hydrology and GIS-based flood susceptibility mapping of the entire catchment. About 40 years of annual peak discharge data, historical cross-sections of different gauging sites, and 12 flood conditioning factors were considered. Our flood susceptibility mapping followed an expert knowledge-based multi-parametric analytical hierarchy process(AHP) and optimized AHP-VIP methods. Peak hydrology data indicated more than 5 times higher discharge contrasted with the mean streamflow of the peak monsoon month in all hydro-monitoring stations that correspond to possible overbank flooding in the shallow semi-alluvial reaches of the Subarnarekha River. Widthdepth ratio revealed continuous changes on the channel cross-sections at decadal scale in all gauging sites. Predicted flood susceptibility map through optimized AHP-VIP method showed a great amount of areas(38%) have a high probability of flooding and demands earnest attention of administrative bodies.The AHP-VIP based flood susceptibility map was theoritically validated through AUC approach and it showed fairly high accuracy(AUC = 0.93). Our study offers an exceptionally cost and time effective solution to the flooding issues in the Subarnarekha basin.  相似文献   

19.
The Scheldt is a tidal river that originates in France and flows through Belgium and the Netherlands. The tides create significant flood risks in both the Flemish region in Belgium and the Netherlands. Due to sea level rise and economic development, flood risks will increase during this century. This is the main reason for the Flemish government to update its flood risk management plan. For this purpose, the Flemish government requested a cost-benefit analysis of flood protection measures, considering long-term developments. Measures evaluated include a storm surge barrier, dyke heightening and additional floodplains with or without the development of wetlands. Some of these measures affect the flood risk in both countries. As policies concerning the limitation of flood risk differ significantly between the Netherlands and Flanders, distinctive methodologies were used to estimate the impacts of measures on flood risk. A risk-based approach was applied for Flanders by calculating the impacts of flood damage at different levels of recurrence, for the base year (2000) and in case of a sea level rise of 60 cm by 2100. Policy within the Netherlands stipulates a required minimal protection level along the Scheldt against storms with a recurrence period of 1 in 4,000 years. It was estimated how flood protection measures would delay further dyke heightening, which is foreseen as protection levels are presently decreasing due to rising sea levels. Impacts of measures (safety benefits) consist of delays in further dyke heightening. The results illustrate the importance of sea level rise. Flood risks increased fivefolds when a sea level rise of 60 cm was applied. Although more drastic measures such as a storm surge barrier near Antwerp offer more protection for very extreme storms, a combination of dykes and floodplains can offer higher benefits at lower costs.  相似文献   

20.
淹没丁坝是一种典型的航道工程整治建筑物,工程实施中坝头附近局部冲刷防护问题尤为重要。为研究护底条件下的淹没丁坝坝头局部冲刷特性问题,采用正态模型试验方法,重点研究了护底条件下淹没丁坝坝头局部冲刷坑形态、最大深度与护底宽度的变化响应规律,结果表明,护底条件下坝头局部冲刷坑位于护底边缘附近,当护底宽度小于20 m左右时,最大冲刷深度变化较小,但冲刷坑位置有所远离坝体,最大冲刷深度随着护底宽度的变化规律可用指数关系表达。基于量纲分析原理,建立了粉细沙河床护底条件下淹没丁坝局部冲刷最大深度计算公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号